CHAPTER VI.
WHEELS.
A wheel for a locomotive vehicle is a circular roller, either cylindrical or conical, the width or thickness of which is considerably less than its diameter. It may be either solid or constructed of various pieces, in which latter case it is called a framed wheel. It may also be made of wood or metal, or a combination of both.
Wheels which were made before the introduction of iron were of course very clumsy in their construction, in order to obtain the requisite strength. Specimens may still be seen in the broad wheels of waggons, technically termed rollers. The naves of these wheels are of enormous size. But when the naves of wheels were reduced for the purposes of elegance, a thin hoop of iron was applied both to the front and back, to prevent them from bursting by the strain on the spokes. When the felloes of wheels were reduced in size, straps of iron, called strakes or streaks, were applied to their convex surfaces covering the joints. But the last improvement was the most important of all, namely, the application of a “hoop-tire” instead of what was called the “strake-tire.” Mr. Felton, in his treatise on coach-building, 1709, says, “Many persons prefer the common sort of wheel on account of their being more easily repaired than the hoop-tyre wheel; but though repairing the latter is more difficult, they are much less subject to need it.”
The earliest form of wheel was no doubt a slice of the trunk of a tree; portions of this being cut out for the purpose of lightening it would be the forerunner of spokes, or we should think the pieces left running from the nave to the felloe would be. The only improvement then effected for a very long period was making them of different pieces of timber instead of all from one piece, though of course the proportions of the parts would be considerably improved, if only for the sake of appearance.
At the end of the seventeenth century, among the wealthier classes, decoration was applied to coaches generally, and wheels in particular, to an extent which would surprise us nowadays. These latter were again ornamented as in the times of the old Roman Empire; the spokes were shaped and carved, the rim moulded, and the naves highly embossed; though, as may be imagined, there was a great want of taste in the application of all this ornament.
Towards the end of the eighteenth century, the extreme height of wheels extended to 5 feet 8 inches, which had but 14 spokes; wheels 5 feet 4 inches high had 12 spokes; wheels 4 feet 6 inches had 10 spokes; and the lowest wheels, 3 feet 2 inches high, had 8 spokes. The naves were of elm, the spokes of oak, and the rims or felloes of ash or beech. The rims of the higher wheels were often of bent timber, in two or more pieces, and were bolted to the tires by one bolt between each pair of spokes. The tire was put on in pieces, until the hoop-tire came into general use, when it superseded the old ones entirely. In consequence of the great height of the wheels it was necessary to make the carriages very long, and the distance from the front to the hind axletree was 9 feet 2 inches in a chariot, and 9 feet 8 inches in a coach, or about 8 inches longer than we should consider necessary now.
These extreme sizes are now very seldom used, except in the case of large dress or state carriages and coaches.
The form of wheel now generally preferred in practice is of the dished or conical kind, and the axle-arm on which it revolves is sloped or bent so far out of the horizontal that the lower spokes are in a vertical position. Undoubtedly the friction is increased by this arrangement, because a wheel on a horizontal axle runs easiest and smoothest; and when the axle-arm is slanted downwards towards the point the wheel has a tendency to bind harder against the shoulder which butts against the nave of the wheel, and the friction between the two is greater than would be the case if the axle-arm were perfectly horizontal. This, however, is a very small objection, inasmuch as this collar is firm and strong, and well fitted to bear any strain that may be thrown on it by the wheel; whereas, if the force acted in the other direction, or against the nuts and linch-pins, there are very few that would last out a day’s journey. The advantage of throwing the strain on the firm and strong shoulder, which is well able to withstand it, is evident; and in this case, in the event of the nuts or linch-pins falling off or giving way, there is not so much danger of the wheel coming off at the moment the nuts go, as its tendency when on a level road is to run upwards towards the shoulder. Besides this, as the lower spokes are in a vertical position, the upper ones spread considerably outwards, and thus afford a greater space for the body between the wheels without the track on the ground being increased; and another advantage is that the mud collected by these conical wheels is thrown off away from the carriage.
The hind wheels of an ordinary carriage vary from 4 feet 3 inches to 4 feet 8 inches; the fore wheels are from 3 feet 4 inches to 3 feet 8 inches. The number of felloes in each circumference varies according to the number of spokes, two spokes being driven into each felloe; 14 to 20 spokes are a usual number for a hind wheel, 12 to 18 for a fore wheel; however, there is no rule to guide one in the matter, experience being the only teacher.
The wheels should be made with a due regard to the offices they have to fulfil; but we are inclined to think that this branch of the trade has not received that careful study which it deserves. Coachmakers seem in such a hurry to produce a perfect vehicle all at once, instead of beginning by improving the parts and then applying these improvements to the whole.