III.—PRIMARY STRATA.
15. The Upper Silurian system is nearly 4000 feet in thickness, and forms the soils over the lower border counties of Wales. It consists of sandstones and shales, with occasional limestones; but the soils formed from these beds take their character from the general abundance of clay. They are cold, usually unmanageable, muddy clays, with the remarkably inferior agricultural value of which the traveller is immediately struck, as he passes westward off the red sandstones of Hereford on to the upper silurian rocks of Radnor.
16. The Lower Silurian rocks are also nearly 4000 feet in thickness, and in Wales lie to the west of the upper silurian rocks. They consist of about 2500 feet of sandstone, on which, when the surface is not naked, barren heaths alone rest.
Beneath these sandstones lie 1200 feet of sandy and earthy limestones, from the decay of which, as may be seen on the southern edge of Caermarthen, fertile arable lands are produced.
17. The Cambrian System, of many thousand yards in thickness, consists in great part of clay slates, more or less hard, which often weather slowly, and almost always produce either poor and thin soils, or cold, difficultly manageable clays, expensive to work, and requiring high farming to bring them into profitable arable cultivation. Cornwall, western Wales, and the mountains of Cumberland, in England; the high country which stretches from the Lammermuir hills to Portpatrick, in Scotland; the mountains of Tipperary, and a large tract on the extreme south of Ireland,—on its east coast, and far inland from the bay of Dundalk,—are covered by these slate rocks. Patches of rich, well cultivated land occur here and there on this formation, with much also that is improvable; but the greater part of it is usurped by worthless heath and extensive bogs.
18. The Mica Slate and Gneiss systems are of unknown thickness, and consist chiefly of hard and slaty rocks, crumbling slowly, forming poor, thin soils, which rest on an impervious rock, and which, from the height to which this formation generally rises, are rendered more unproductive by an unpropitious climate. They form extensive heathy tracts in Perth and Argyle, and on the north and west of Ireland. Here and there only, in the valleys or sheltered slopes, and by the margins of the lakes, spots of bright green meet the eye, and patches of a willing soil, fertile in corn.
A careful perusal of the preceding sketch of the general agricultural capabilities of the soils formed from the several classes of stratified rocks, will have presented to the reader many illustrations of the facts stated in the preceding section; he will have drawn for himself—to specify a few examples—the following among other conclusions.
1. That some formations, like the new red sandstone, yield a soil almost always productive; others, as the coal measures and millstone grits, a soil almost always naturally unproductive.
2. That good, or better land at least, than generally prevails in a district, may be expected where two formations or two different kinds of rock meet,—as when a limestone and a clay mingle their mutual ruins for the formation of a common soil.
3. That in almost every country extensive tracts of land on certain formations will be found laid down to natural grass, in consequence of the original difficulty and expense of working. Such are the Lias, the Oxford, the Kimmeridge, and the London clays. In raising corn, it is natural that the lands which are easiest and cheapest worked should be first subjected to the plough; it is not till implements are improved, skill increased, capital accumulated, and population presses, that the heavier lands will be rescued from perennial grass, and made to produce that greatly increased amount of food for both man and beast, which they are easily capable of yielding.