Classification of Carboniferous coelacanths has been difficult, partly because the remains are commonly fragmentary, and significant changes in anatomy did not become apparent in early studies. In general, coelacanths have been remarkably stable in most characters, and it has been difficult to divide the group into families. As Schaeffer (1952:56) pointed out, definition of coelacanth genera and species has previously been made on non-meristic characters, and the range of variation within a species has received little attention. For example, Reis (1888:71) established the genus Rhabdoderma, using the strong striation of the scales, gular plates and posterior mandible as the main characters of this Carboniferous genus. Moy-Thomas (1937:399-411) referred all Carboniferous species to Rhabdoderma, redescribed the genus and compared it to Coelacanthus, the Permian genus. He cited as specific characters the ornamentation of the angulars, operculars and gular plates (Moy-Thomas, 1935:39; 1937:385). Individual variation in some species has rendered ornamentation a poor criterion. This variation is apparent in Synaptotylus newelli (Hibbard), some specimens having little or no ornamentation; others having much more. The number of ridges and pattern of ridges on the scales also varies. Schaeffer (1952:56) has found this to be true of Diplurus also. Moy-Thomas (1935:40; 1937:385) realized that the type of scale is a poor criterion for specific differentiation. In the search for features useful in distinguishing genera of coelacanths, Schaeffer and Gregory (1961:3, 7) found the structure of the basisphenoid to be distinctive in known genera, and thought it had taxonomic significance at this level. Higher categories should have as their basis characters that display evolutionary sequences. A recent classification (Berg, 1940), followed in this paper, reflects two evolutionary trends in endocranial structure of coelacanths: reduction of endocranial ossification and loss of the basipterygoid processes. Because there has been little change in other structures in coelacanths, Berg's classification is the most useful. Berg (1940:390) includes Rhabdoderma in the suborder Diplocercidoidei because of the presence of the basipterygoid processes, and in the single family, Diplocercidae, but remarks that because of the reduced amount of endocranial ossification the Carboniferous Diplocercidae "probably constitute a distinct family." In considering this concept of classification, the subfamilies Diplocercinae and Rhabdodermatinae of the family Diplocercidae are proposed above. The subfamily Rhabdodermatinae includes at present Rhabdoderma and Synaptotylus. The principal characters of the subfamily Rhabdodermatinae, named for the first known genus, are the retention of the basipterygoid processes and the reduction of endocranial ossification. Application of this classification based upon endocranial structure would probably change existing groupings of species of Carboniferous coelacanths; the entire complex of Carboniferous genera should be redescribed and redefined. It will be necessary to consider endocranial structure in any future classification.

The greater part of the evolution previously mentioned appears to have been accomplished during the Carboniferous; thereafter coelacanth structure became stabilized. The trend progressed from Devonian coelacanths which had two large unpaired bones in the endocranium, and both antotic and basipterygoid processes on the basisphenoid, to Carboniferous fishes in which ossification was reduced to a number of paired and unpaired bones embedded in cartilage, and retaining both processes, and then post-Carboniferous kinds with reduced ossification and no basipterygoid processes. The Pennsylvanian was evidently the time of greatest change for the coelacanths, and they have not changed significantly since, in spite of the fact that since the Jurassic they have shifted their environment from shallow, fresh water to moderate depth in the sea (Schaeffer, 1953:fig. 1). The changes in endocranial structure appear to be significant, and are perhaps related to higher efficiency of the mouth parts in catching and swallowing prey (see p. 482).

ENVIRONMENT

The coelacanth fishes from the Rock Lake shale are part of the varied fauna collected from Garnett. Peabody (1952:38) listed many elements of the fauna and flora, and concluded that the deposits are of lagoonal origin. In addition to numerous invertebrates (including microfossils) and arthropods, a number of vertebrates other than coelacanths have been found. These include at least one kind of shark, Hesperoherpeton garnettense Peabody, one or more kinds of undescribed labyrinthodonts and the reptiles Petrolacosaurus kansensis Lane, Edaphosaurus ecordi Peabody, and Clepsydrops (undescribed species). This is indeed a rich vertebrate fauna, and the earliest known reptilian fauna. Much of the rock contains plant remains. The flora that has been identified is adapted to growing in a well-drained soil; although it contains some elements considered characteristic of the Permian, it is of Pennsylvanian age (Moore et al., 1936). Peabody (1952:38-39) discusses the features of these lagoonal sediments. Much of the fauna and flora suggests continental origin, but the many marine invertebrates at some horizons indicate that at least some of the sediments were of marine origin.

Little can be said about the actual environment of the living fishes of the genus Synaptotylus. Remains of these fishes occur in layers containing marine invertebrates, as well as in those containing plant remains and vertebrate skeletal parts, and in those nearly completely composed of dark carbonaceous material. Most of the remains are fragmentary and consist of isolated bones, isolated scales, and dissociated skulls; only one specimen and half of another are nearly complete. Many published statements on Rhabdoderma, a related genus, indicate both marine and fresh-water environments. Wehrli (1931:115) regarded Rhabdoderma elegans (Newberry) as a euryhaline species, and cited its occurrence with both marine and fresh-water fossils. Aldinger (1931:199) also found this to be the case with other species, and Fiege (1951:17) quotes others as giving the same information. Keller (1934:913) thought that few Carboniferous fishes were exclusively marine, and stated that the majority of them became adapted to fresh water during the late Carboniferous. Later, Schaeffer (1953:175) stated that all Carboniferous and Permian coelacanths were fresh-water fishes, and that many were from swamp deposits. If Keller is correct, then members of the genus Synaptotylus may have inhabited the lagoon, the adjacent sea, or the streams draining into the lagoon. Perhaps these fishes swam upstream, as modern salmon and tarpon do, although there is no direct evidence for this. Possibly they lived in the lagoon at times of scant rainfall and little runoff, when the salinity of lagoon water approached normal marine values or the fishes may have lived in the streams, and after death were washed into the lagoon. As numerous remains of land plants and animals were washed in, perhaps this best accounts for the presence of the fish in nearly all layers of the deposits, not only the marine strata.

SUMMARY

A new genus of Pennsylvanian coelacanths, Synaptotylus, is described and a previously named species, Coelacanthus newelli Hibbard, 1933 (C. arcuatus Hibbard, 1933, is a junior synonym), is referred to this genus. All specimens of Synaptotylus newelli (Hibbard) were collected from the Rock Lake shale member of the Stanton formation, Lansing group, Missouri series, six miles northwest of Garnett, Anderson County, Kansas. Synaptotylus is distinguished from all other coelacanths by a basisphenoid having large, knoblike antotic processes each connected by a low ridge to a small basipterygoid process. Synaptotylus is most closely related to Rhabdoderma, but is intermediate between Rhabdoderma and Coelacanthus in shape of the fin girdles and basal plates. Two new subfamilies, Diplocercinae and Rhabdodermatinae, of the family Diplocercidae, are proposed. Synaptotylus and Rhabdoderma are included in the subfamily Rhabdodermatinae, because both exhibit reduced ossification in the endocranium and retain basipterygoid processes.

Loss of the basipterygoid processes in post-Carboniferous coelacanths may reflect the development of a more efficient feeding mechanism, by allowing the palatoquadrate complex and mandible to swing farther laterally and expand the oral cavity.

Synaptotylus newelli (Hibbard) may have occupied either the sea or fresh water; these fishes occur in lagoonal deposits with reptiles and amphibians, arthropods, marine invertebrates and remains of land plants.

Because scale patterns on Synaptotylus and Rhabdoderma are so nearly similar and vary with size of the scale and its location on the fish, it is recommended that isolated scales not be assigned to a species, and to a genus only with great caution.