Localities.—The specimens studied by Hibbard (K. U. nos. 786F, 787F, 788) and no. 11457 were taken from the Bradford Chandler farm, from the original quarry in SW-1/4, SE-1/4, sec. 32, T.19S, R.19E. The remainder were collected from University of Kansas Museum of Natural History locality KAn-1/D, a quarry in sec. 5, T.19S, R.19E. Both of these are approximately six miles northwest of Garnett, Anderson County, Kansas.

Referred specimens.—K. U. nos. 786F, 787F, 788, 9939, 11424, 11425, 11426, 11427, 11428, 11429, 11430, 11431, 11432, 11433, 11434, 11449, 11450, 11451, 11452, 11453, 11454, 11455, 11457.

Preservation.—Preservation of many of the specimens is good, few are weathered, but most of the remains are fragmentary and dissociated. One specimen (the type, no. 786F) and half of another were nearly complete. Specimens are found scattered throughout the Rock Lake shale (see p. 498).

Morphology.—Terminology used for bones of the skull is that of Moy-Thomas (1937) and Schaeffer (1952).

Endocranium and parasphenoid

Fig. 1. Synaptotylus newelli (Hibbard). Restoration of the basisphenoid, based on K. U. no. 9939, × 5. A, lateral view, B, posterior view, C, ventral view.

The basisphenoid (see fig. 1) has been observed in only one specimen (K. U. no. 9939) in posterodorsal and ventral views. The basisphenoid, although somewhat crushed, appears to be fused to the parasphenoid. Both antotic and basipterygoid processes are present, and are connected by a low, rounded ridge. The antotic processes are large, bulbar projections. These processes in Rhabdoderma are wider and more flattened (Moy-Thomas, 1937:figs. 3, 4). The antotic processes are at mid-point on the lateral surface, not dorsal as in Rhabdoderma, and both the processes and the ridge are directed anteroventrally. The basipterygoid processes are smaller, somewhat vertically elongated projections, situated at the end of the low connecting ridge extending anteroventrally from the antotic processes, and are not basal as are those of Rhabdoderma. The sphenoid condyles, seen in posterior view, issue from the dorsal margin of the notochordal socket. The margins of the socket are rounded, and slope down evenly to the center. A slight depression situated between and dorsal to the sphenoid condyles is supposedly for the attachment of the intercranial ligament (Schaeffer and Gregory, 1961:fig. 1). The alisphenoids extend upward, anterodorsally from the region above the sphenoid condyles, and may connect to ridges on the ventral surface of the frontals. The lateral laminae are not preserved, and their extent is unknown.

In viewing the changes in the endocranium of Carboniferous and Permian coelacanths, it would be well to consider the mechanical relationship of the loss of the basipterygoid processes to the effect on swallowing prey. Evidently many of the coelacanths, Latimeria for example, are predators (Smith, 1939:104); to such fishes a more efficient catching and swallowing mechanism would be an adaptive improvement. Stensiö (1932:fig. 14) presents a cross section of the ethmosphenoid moiety of the endocranium of Diplocercides kayseri (von Koenen) showing the metapterygoid of the palatoquadrate loosely articulated to both the antotic and basipterygoid processes. According to Tchernavin (1948:137) and Schaeffer and Rosen (1961:190) the swallowing of large prey depends on the ability of the fish to expand its oral cavity by allowing the posteroventral portion of the palatoquadrate and the posterior end of the mandible to swing outward. Where the palatoquadrate articulates with the basisphenoid at the antotic and basipterygoid processes, as in the Devonian coelacanths, it can not swing so far laterally as where it articulates with only the dorsal, antotic process. Perhaps the loss of the basipterygoid articulation reflects the development of a more efficient mechanism for swallowing prey in these fishes. Schaeffer and Rosen (1961:191, 193) show that in the evolution of the actinopterygians several changes improved the feeding mechanism: some of these changes are: (1) freeing of the maxilla from the cheek, giving a larger chamber for the action of the adductor mandibulae; (2) development of a coronoid process on the mandible; and (3) increase in torque around the jaw articulation. In coelacanths, at least some comparable changes occurred, such as: (1) loss of the maxillary, thus increasing the size of the adductor chamber; (2) development of the coronoid bone, affording a greater area for muscle attachment; (3) development of an arched dorsal margin on the angular; (4) modification of the palatoquadrate complex, with resultant loss of the basipterygoid processes. In Synaptotylus the basipterygoid processes are small, not basally located, and perhaps not functional. A more efficient feeding mechanism developed rapidly during the Carboniferous and has remained almost unaltered.