Glass containing gold exhibits the same singular change of colour on being exposed to a gentle heat, as has been already noticed with respect to glass containing copper[343]. The former when taken from the crucible is generally of a pale rose-colour, but sometimes colourless as water, and does not assume its ruby colour till it has been exposed to a low red-heat, either under a muffle or in the lamp. Great care must be taken in this operation, for a slight excess of fire destroys the colour, leaving the glass of a dingy brown, but with a blue transparency like that of gold-leaf. These changes of colour have been vaguely attributed to change of oxygenation in the gold; but it is obviously impossible that mere exposure to a gentle heat can effect any chemical change in the interior of a solid mass of glass, which has already undergone a heat far more intense. In fact I have found that metallic gold gives the red colour as well as the oxide, and it appears scarcely to admit of a doubt, that in a metal so easily reduced, the whole of the oxygen must be expelled long before the glass has reached its melting-point. It has long been known that silver yields its colour to glass while in the metallic state, and everything leads one to suppose that the case is the same as to gold.

There is still one other substance by means of which I find it is possible to give a red colour to glass, and that is a compound of tin, chromic acid, and lime; but my trials do not lead me to suppose that glass thus coloured will ever be brought into use.

* * * * *

With respect to the production of artificial gems, they are now made abundantly of almost every shade of colour, closely approximating to those which occur in nature, excepting in hardness and refractive power. They are formed by fusing what is called a base with various metallic oxides. The base varies in composition: thus, M. Fontanieu makes his by fusing silica with carbonate of potash, carbonate of lead and borax. M. Donault Wieland’s consists of silica, potash, borax, oxide of lead, and sometimes arsenious acid. Hence the base differs but little in composition from glass. By fusing the base with metallic oxides, the former acquires various tints. Thus with oxide of antimony the oriental topaz is prepared; with oxide of manganese and a little purple of cassius, the amethyst; with antimony and a very small quantity of cobalt, the beryl; with horn silver (chloride of silver), the diamond and opal: the oriental ruby is prepared from the base, the purple of cassius, peroxide of iron, golden sulphuret of antimony, manganese calcined with nitre and rock crystal.]

FOOTNOTES

[304] Lib. xxxvi. c. 26.

[305] Lib. xxxv. c. 26. and lib. xxxvii. c. 9. The lapis obsidianus, which Obsidius first found in Ethiopia, and made known, is undoubtedly the same as that vulcanic glass which is sometimes called Icelandic agate, pumex vitreus, and by the Spaniards, who brought it from America and California, named galinace.

[306] Historiæ Augustæ Scriptores, in vita Gallieni, cap. 12.

[307] Ib. in Vopisc. vita Saturnini, c. 8.

[308] Strabo, Amst. 1707, fol. lib. xvi. p. 1099.—Some consider the glass earth here mentioned as a mineral alkali that was really found in Egypt, and which served to make glass; but, as the author speaks expressly of coloured glass, I do not think that the above salt, without which no glass was then made, is what is meant; but rather a metallic oxide, such perhaps as ochre or manganese.