It has been remarked by Von Stetten, that in the building accounts of the city of Augsburg, fire-engines are first mentioned in the year 1518. They are called there instruments for fires, water syringes useful at fires; and these names seem to announce that the machine was then in its infancy. At that time they were made by a goldsmith at Friedberg, named Anthony Blatner, who the same year became a citizen of Augsburg. From the account added,—that the wheels and levers were constructed by a wheelwright, and from the greatness of the expense,—there is reason to conclude that these were not small, simple hand-engines, but large and complex machines. In that respectable dictionary entitled Maaler’s Teutschsprach, Zurich, 1561, I find fire-hooks and fire-ladders, but no instrument similar to a fire-engine.

In the year 1657, the well-known jesuit Caspar Schott was struck with admiration on seeing at Nuremberg a fire-engine, which had been made there by John Hautsch. It stood on a sledge, ten feet long and four feet broad. The water-cistern was eight feet in length, four in height, and two in width. It was moved by twenty-eight men, and forced a stream of water an inch in diameter to the height of eighty feet[602]; consequently over the houses. The machine was drawn by two horses. Hautsch distributed throughout Germany an engraving of it, with an offer of constructing similar ones at a moderate price, and teaching the use of them; but he refused to show the internal construction of it to Schott, who however readily conjectured it. From what he says of it, one may easily perceive that the cylinders did not stand in a perpendicular direction, but lay horizontally in a box, so that the pistons moved horizontally, and not vertically, as at present. Upright cylinders therefore seem to belong to the more modern improvements. Schott adds, that this was not a new invention, as there were such engines in other towns; and he himself forty years before, and consequently in 1617, had seen one, but much smaller, in his native city. He was born, as is well-known, in 1608, at Königshofen, not far from Würzburg. George Hautsch also, son of the above artist, constructed similar engines, and perhaps with improvements, for Wagenseil[603] and others have ascribed to him the invention.

The first regulations at Paris respecting fires, as far as is known, were made to restrain incendiaries, who in the fourteenth century, under the name of Boutefoux, occasioned great devastation, not only in the capital, but in the provinces. This city appears to have obtained fire-engines for the first time in the year 1699; at any rate the king at that period gave an exclusive right to Dumourier Duperrier to construct those machines called pompes portatives; and he was engaged at a certain salary to keep in repair seventeen of them, purchased for Paris, and to procure and to pay the necessary workmen. In the year 1722 the number of these engines was increased to thirty, which were distributed in different quarters of the city; and at that time the contractors received annually 20,000 livres. The city, however, besides these thirty royal engines, had a great many others which belonged to the Hotel de Ville, and with which the Sieur Duperrier had nothing to do[604].

In the middle of the seventeenth century fire-engines indeed were still very imperfect. They had neither an air-chamber nor buckets, and required a great many men to work them. They consisted merely of a sucking-pump and forcing-pump united, which projected the water only in spurts, and with continual interruption. Such machines, on each movement of the lever, experience a stoppage, during which no water is thrown out; and because the pipe is fixed, it cannot convey water to remote places, though it may reach a fire at no great distance, where there are doors and windows to afford it a passage. At the same time the workmen are exposed to danger from the falling of the houses on fire, and must remove from them to a greater distance. Hautsch, however, had adapted to his engine a flexible pipe, which could be turned to any side as might be necessary, but certainly not an air-chamber, otherwise Schott would have mentioned it. In the time of Belidor there were no other engines in France, and the same kind alone were used in England in 1760. Professor Busch at least concludes so[605], from the account then given by Ferguson, who called Newsham’s engine, which threw the water out in a continued stream, a new invention. In Germany the oldest engines are of this kind.

Who first conceived the idea of applying to the fire-engine an air-chamber, in which the included air, by compressing the water, forces it out in a continued stream, is not known. According to a conjecture of Perrault, Vitruvius seems to speak of a similar construction; but Perrault himself acknowledges that the obscure passage in question[606] might be explained in another manner. The air-chamber in its action has a similarity to Hero’s fountain, in which the air compressed by the water obliges the latter to ascend[607].

I can find no older fire-engine constructed with an air-chamber than that of which Perrault has given a figure and description. He says it was kept in the king’s library at Paris, and during fires could project water to a great height; that it had only one cylinder, and yet threw out the water in one continued jet. He mentions neither its age nor the inventor; and I can only add that his book was printed in 1684. The principle of this machine, however, seems to have been mentioned before by Mariotte, who on this account is by some considered as the inventor; but he does not appear to have had any idea of a fire-engine, at least he does not mention it.

It is certain that the air-chamber, at least in Germany, came into common use after it was applied by Leupold to fire-engines, a great number of which he manufactured and sold. He gave an account of it in a small work, consisting of four sheets quarto, which was published in 1720, but at first he kept the construction a secret. The engines which he sold consisted of a strong copper box closely shut and well-soldered. They weighed no more than sixteen pounds, occupied little room, had only one cylinder; and a man with one of them could force up the water without interruption to the height of from twenty to thirty feet. About 1725 Du Fay saw one of Leupold’s engines at Strasburg, and discovered by conjecture the construction of it, which he made known in the Transactions of the Academy of Sciences at Paris for that year. It is very singular that on this occasion Du Fay says nothing of Mariotte, or of the engine in the king’s library. Leupold, however, had some time before, that is in 1724, given a description and figure in his Theatrum Machinarum Hydraulicarum[608], with which undoubtedly Du Fay was not acquainted.

Another improvement, no less useful, is the leather hose added to the engine, which can be lengthened or shortened as necessary, and to which the fire-pipe is applied, so that the person who directs the jet of water can approach the fire with less danger. This invention, it is well known, belongs to two Dutchmen, both named Jan van der Heide[609], who were inspectors of the apparatus for extinguishing fires at Amsterdam. The first public experiments made with it took place in 1672; and were attended with so much success, that at a fire next year, the old engines were used for the last time, and the new ones introduced in their stead. In 1677, the inventor obtained an exclusive privilege to make these engines during the period of twenty-five years. In 1682, engines on this construction were distributed in sufficient number throughout the whole city, and the old ones were entirely laid aside. In 1695 there were in Amsterdam sixty of these engines, the nearest six of which were to be employed at every fire. In the course of a few years they were common throughout all the towns in the Netherlands.

All these circumstances have been related by the inventor in a particular work; which, on account of the excellent engravings it contains, is exceedingly valuable[610]. Of these, the first seven represent dangerous conflagrations at which the old engines were used, but produced very little effect. One of them is the fire which took place in the stadthouse of Amsterdam in the year 1652. The twelve following plates represent fires which were extinguished by means of the new engines, and exhibit, at the same time, the various ways in which the engines may be employed with advantage. According to an annexed calculation, the city of Amsterdam lost by ten fires, when the old apparatus was in use, 1,024,130 florins; but in the following five years, after the introduction of the new engines, the loss occasioned by forty fires amounted only to 18,355 florins; so that the yearly saving was ninety-eight per cent. Of the internal construction of these engines no description or plates have been given; nor do I remember to have read a passage in any author from which it can be concluded that they were furnished with an air-chamber, though in the patents they were always called spouting-engines, which threw up one continued jet of water. The account given even of the nature of the pipe or hose is short and defective, probably with a view to render it more difficult to be imitated. It is only said that it was made of leather in a particular manner; and that, besides being thick, it was capable of resisting the force of the water.

The conveyer or bringer was invented also about the same time by these two Dutchmen. This name is given at present to a box which has on the one side a sucking-pump, and on the other a forcing-pump. The former serves to raise the water from a stream, well, or other reservoir, by means of a stiff leathern pipe, having at the extremity a metal strainer pierced with holes to prevent the admission of dirt, and which is kept suspended above the mud by a round piece of cork. The forcing-pump drives the water thus drawn up through a leathern pipe into the engine, and renders the laborious conveyance of water by buckets unnecessary.