Vienna began to be lighted in the year 1687. The lights were hung out in the evening on a signal given by the fire-bell. In 1704 lamps were introduced; but at first the light which they afforded was very imperfect, as the lamps burned badly, and because, to save the expense of lamp-lighters, every housekeeper was obliged daily to remove the empty lamps, to carry them to the lamp-office to be filled, and to light them again on a signal given with a bell. In 1776, the lamps, which before amounted to 2000, were increased to 3000, and a contract was entered into for lighting them at the rate of 30,000 florins. These lamps were invented by counsellor Sonnenfels, and amounted in 1779 to 3445. They are made of white glass, in a globular form, and have a covering of tin-plate, painted red on the outside and polished within. They are supported by lamp-irons, fixed in the houses at the height of fifteen feet from the earth. Each lantern is only sixteen paces distant from the other, so that the streets are completely illuminated. They are kept lighted both summer and winter, whether the moon shines or not; and this is more necessary at Vienna than anywhere else, on account of the height of the houses and the narrowness and crookedness of the streets. The lamp-lighters wear an uniform, and are under military discipline. In 1783 the yearly expense of the lamps was estimated at only 17,000 florins[454].

Leipzig was lighted in 1702, and Dresden in 1705. In 1766, the number of lamps at the latter amounted only to 728, for the lighting of which oil of rape-seed was employed.

In Cassel the streets began to be lighted under the Landgrave Charles, in 1721; but as regulations were not made sufficient to support this improvement, it was at length dropped. It was however revived in 1748, and in 1778 the number of the lamps was increased to 1013, besides those at the landgrave’s palace.

Hanover was lighted in 1696, Halle in 1728, and Göttingen in 1735. Brunswick since 1765 has had 1565 lamps. Zurich has been lighted since 1778, but the lamps are very few in number.

[Such was the state of street-lighting towards the end of the last century, and many of the readers of this work will remember the round glass lamps and their dismal oil-light, which long after the streets of London were illuminated with gas, still continued to be employed in the outskirts of this immense metropolis. How changed is all this now, and how surprising must it appear, that a thing so simple as the employment of the combustible gases produced in the distillation of coal and other bodies of organic origin should date from so recent a period! But such is the case with most of the improvements which tend to the comfort and happiness of the human race; slow and by degrees they progress towards perfection,—a fact most admirably illustrated by numerous articles contained in these volumes.

The first idea of applying coal-gas to œconomical purposes is generally attributed to Mr. William Murdoch, who in 1792 employed coal-gas for lighting his house and offices at Redruth in Cornwall, and in 1798 constructed the apparatus for the purpose of lighting Boulton and Watt’s celebrated manufactory at Soho, near Birmingham, which on the occasion of the peace in 1802 was publicly illuminated by the same means. This display vastly attracted public attention to the subject, and soon after several manufacturers whose works required light and heat adopted the use of gas; a button manufactory at Birmingham used it largely for soldering; Halifax, Manchester and other towns soon followed. A single cotton-mill in Manchester used above 900 burners, and had several miles of pipe laid down to supply them. Mr. Murdoch, who erected the apparatus used in this mill, sent a detailed account of his operations to the Royal Society in 1808, and received the gold medal of that body. It appears, however, from an interesting paper by R. C. Taylor on the coal-fields of China[455], that the Chinese, if not manufacturers, are nevertheless gas consumers and employers on a grand scale, and have evidently been so ages before the knowledge of its application was acquired by Europeans. Beds of coal are frequently pierced by the borers for salt water; and the inflammable gas is forced up in jets twenty or thirty feet in height. From these fountains the vapour has been conveyed to the salt-works in pipes, and there used for the boiling and evaporation of the salt; other tubes convey the gas intended for lighting the streets and the larger apartments and kitchens. As there is still more gas than required, the excess is conducted beyond the limits of the salt-works, and there forms separate chimneys or columns of flame. But this, like many other discoveries of the Chinese, remained, owing to their exclusive habits, unknown to us till within a recent period, and the world may fairly be said to be indebted to Mr. Winsor, for the vast benefit conferred upon it by gas-illumination. After several experiments, this gentleman in 1803–1804 lighted the Lyceum theatre, and shortly afterwards, in 1807, one side of Pall-Mall with gas distilled from coal. Soon after that period companies were formed for carrying on the manufacture of gas upon an extensive scale, oil-lamps were banished from all the great thoroughfares of the metropolis, and in the course of fifteen years not only was every street and alley illuminated from the same source, but it was generally introduced into shops and houses, was carried into the suburbs, and has now become general in every town and city of the empire.

It would lead us too far to enter into minute details concerning the structure, uses and arrangement of the various apparatus employed in the production of gas; it will suffice to observe that when coal is heated to redness in a close vessel, it yields a variety of products which may be classed under three heads, as,—1st, permanent gases; 2ndly, vapours condensable into the liquid or solid state by cooling; and 3rdly, the residuary matter, coke, which remains in the retort. The object of gas manufacture is to separate these from each other, and to purify the gaseous products by washing and other means, so as to render them fit for combustion.

The following particulars, taken from Brande’s Dictionary of Science, may serve to give an idea of the quantity of gas annually consumed in London. The oldest of the London gas-works is the establishment belonging to the original chartered company. They have three stations; the largest situated in Peter-street, Westminster; the second in Brick-lane, St. Luke’s, and the third in the Curtain-road, Shoreditch. This company consumes 50,000 chaldrons of coals annually, the produce of which in gas may be estimated at about six hundred million cubic feet, or about eighteen million seven hundred and fifty thousand pounds weight of gas. It may be assumed that each chaldron of coals weighs 2880 lbs., and yields an average produce of 12,000 cubic feet of purified gas. The prime cost of gas is about four or five shillings per 1000 cubic feet; the usual retail price is from seven to ten shillings per 1000 cubic feet.

The chartered company probably supplies about a fifth part of the whole of the gas consumed in London and the suburbs; so that the total annual consumption of coal employed for this important manufacture in the London district only, probably exceeds two hundred and fifty thousand chaldrons, and the quantity of gas produced for the supply of this district amounts annually to three thousand million cubic feet. The weight of this quantity of gas exceeds seventy-five millions of pounds; and the light produced by its combustion may be considered as equivalent to that which would be obtained by the combustion of one hundred and sixty millions of pounds of mould-candles of six to the pound.

The operations of the London Gas-light Company, which was established in the year 1833, are also on a scale of great magnitude. Their works, situated at Vauxhall, are not only the most powerful, but the most complete in arrangement of any in the world. From this point their mains ramify to a prodigious extent in Middlesex as well as Surrey, and by the admirable mode in which they are laid, aided by the power of their works, they are enabled to supply gas at Highgate Hill (seven miles distance) with the same precision and in the same abundance as at Vauxhall. The extent of their pipes exceeds one hundred and fifty miles.