The twilight accounts for the eye being in a perfect state of repose, and thus very susceptible, and the colour of the poppy is sufficiently powerful in the summer twilight of the longest days to act with full effect and produce a compensatory image. I have no doubt these appearances might be reduced to experiment, and the same effect produced by pieces of coloured paper. Those who wish to take the most effectual means for observing the appearance in nature—suppose in a garden—should fix the eyes on the bright flowers selected for the purpose, and, immediately after, look on the gravel path. This will be seen studded with spots of the opposite colour. The experiment is practicable on a cloudy day, and even in the brightest sunshine, for the sun-light, by enhancing the brilliancy of the flower, renders it fit to produce the compensatory colour sufficiently distinct to be perceptible even in a bright light. Thus, peonies produce beautiful green, marigolds vivid blue spectra.

[55.]

As the opposite colour is produced by a constant law in experiments with coloured objects on portions of the retina, so the same effect takes place when the whole retina is impressed with a single colour. We may convince ourselves of this by means of coloured glasses. If we look long through a blue pane of glass, everything will afterwards appear in sunshine to the naked eye, even if the sky is grey and the scene colourless. In like manner, in taking off green spectacles, we see all objects in a red light. Every decided colour does a certain violence to the eye, and forces the organ to opposition.

[56.]

We have hitherto seen the opposite colours producing each other successively on the retina: it now remains to show by experiment that the same effects can exist simultaneously. If a coloured object impinges on one part of the retina, the remaining portion at the same moment has a tendency to produce the compensatory colour. To pursue a former experiment, if we look on a yellow piece of paper placed on a white surface, the remaining part of the organ has already a tendency to produce a purple hue on the colourless surface: in this case the small portion of yellow is not powerful enough to produce this appearance distinctly, but, if a white paper is placed on a yellow wall, we shall see the white tinged with a purple hue.

[57.]

Although this experiment may be made with any colours, yet red and green are particularly recommended for it, because these colours seem powerfully to evoke each other. Numerous instances occur in daily experience. If a green paper is seen through striped or flowered muslin, the stripes or flowers will appear reddish. A grey building seen through green pallisades appears in like manner reddish. A modification of this tint in the agitated sea is also a compensatory colour: the light side of the waves appears green in its own colour, and the shadowed side is tinged with the opposite hue. The different direction of the waves with reference to the eye produces the same effect. Objects seen through an opening in a red or green curtain appear to wear the opposite hue. These appearances will present themselves to the attentive observer on all occasions, even to an unpleasant degree.

[58.]

Having made ourselves acquainted with the simultaneous exhibition of these effects in direct cases, we shall find that we can also observe them by indirect means. If we place a piece of paper of a bright orange colour on the white surface, we shall, after looking intently at it, scarcely perceive the compensatory colour on the rest of the surface: but when we take the orange paper away, and when the blue spectrum appears in its place, immediately as this spectrum becomes fully apparent, the rest of the surface will be overspread, as if by a flash, with a reddish-yellow light, thus exhibiting to the spectator in a lively manner the productive energy of the organ, in constant conformity with the same law.