The following are a few of those plants which indicate changes in the weather:--
Chickweed is an excellent barometer. When the flower expands fully, we are not to expect rain for several hours; should it continue in that state, no rain will disturb the summer’s day. When it half conceals its miniature flower, the day is generally showery; but, if it entirely shuts up, or veils the white flower with its green mantle, let the traveller take the hint and put on his great-coat. The different species of trefoil always contract their leaves at the approach of a storm; so certainly does this take place, that these plants have acquired the name of the husbandman’s barometer.
The tulip and several of the compound yellow flowers also close before rain. There is, besides, a species of wood-sorrel, which doubles its leaves before storms and tempests. The bauhinia, or mountain ebony, cassia, and sensitive plants, observe the same habit.
Note 34, p. [225].--Saint Swithin.
The popular adage of Forty days’ rain after St. Swithin, is a tradition which seems to have derived its origin from the following circumstance. Swithin, or Swithum, bishop of Winchester, who died in 868, desired that he might be buried in the open church-yard, and not in the chancel of the minster, as was usual with other bishops; and his request was complied with; but the monks, on his being canonized, considering it disgraceful for the saint to lie in a public cemetery, resolved to remove the body into the choir, which was to have been done with solemn procession on the 15th of July. It rained, however, so violently for forty days together at this season, that the design was abandoned. “Now, without entering into the case of the bishop,” says Mr. Howard, in his work on the Climate of London, “who was probably a man of sense, and wished to set the example of a more wholesome, as well as a more humble, mode of resigning the perishable clay to the destructive elements, I may observe, that the fact of the hindrance of the ceremony by the cause related is sufficiently authenticated by tradition; and the tradition is so far valuable, as it proves that the summers in this southern part of our island, were subject, a thousand years ago, to occasional heavy rains, in the same way as at present.” Mr. Howard has shown, by a table, that the notion commonly entertained on this subject, if put strictly to the test of experience, at any one station, in this part of the island, will be found fallacious; he, however, very justly observes, that “the opinion of the people on subjects connected with Natural History is commonly founded, in some degree, on fact or experience;” and to do justice to the popular observation in question, he states that, “in a majority of our summers, a showery period, which, with some latitude as to time and local circumstances, may be admitted to constitute daily rain for forty days, does come on about the time indicated by this tradition; not that any long space before is often so dry as to mark distinctly its commencement.”
Note 35, p. [230].--The whale.
Did the whale know his own power, he would easily destroy all the machinery which the art of man could devise for catching him; it would be only necessary for him to swim on the surface in a straight line in order to break the thickest rope; but the fish, on being struck by the harpoon, obeys a natural instinct, which, in this instance, betrays him to his death. Sir H. Davy, in his Salmonia, observes, that the whale, not having an air-bladder, can sink to the lowest depths of the ocean, and mistaking the harpoon for the teeth of a sword-fish, or a shark, he instantly descends, this being his manner of freeing himself from these enemies, who cannot bear the pressure of a deep ocean; and from ascending and descending in small space, he thus puts himself in the power of the whaler.--See [Note 30].
Note 36, p. [235].--Progressive motion in fishes:
boats impelled by paddling, rowing, &c.
To render the subject to which this note refers farther intelligible, we may show the means by which a fish moves forward in the water. The accompanying diagram and demonstration are from Dr. Roget’s Bridgewater Treatise.