In the high tension, or jump spark system, the spark gap D-K is of fixed length, hence there are no moving parts or contacts within the cylinder to wear, to cause leakage of gas, or to cause a change in the timing. This advantage is offset to some degree by the difficulty experienced in maintaining the insulation of the high tension current.

The high tension current leaves the spark coil M at the binding screw N, flows along the wire J, and enters the spark plug at the binding screw A. From the binding post the current follows the central electrode B to its terminal at D. At D a break in the circuit occurs which is called the spark gap. It is at this point that the spark occurs, the current jumping from D to point K through the air. Point K is fastened in the threaded metal sleeve E which is in turn screwed into the cylinder wall G or ground. From the ground the current returns to its source through binding post O to the coil. The spark therefore occurs inside of the cylinder wall and in contact with the combustible charge, at the point marked “spark” in the cut.

Fig. 99. Bosch Spark Plugs.

If the fuel, lubricating oil, and air are not supplied in proper proportions, soot will be deposited on the lower surface of the porcelain, and as soot is an excellent conductor of high tension current, the current will follow the soot rather than the high resistance of the spark gap, a condition that will result in misfiring or a complete stoppage of the motor. Carbonized lubricating oil or moisture have the same effect.

Preventing the deposits of soot, moisture and carbonized oil is the chief object of plug manufacturers, many of whom have brought out designs of merit. In fact the problem of elimination of soot is the principal cause of the many types of plugs now on the market.

While many plugs differ in minor refinement of detail from the typical plug shown, the connections and general construction are the same in all types, the spark being produced in a gap of fixed length which is insulated from the cylinder.

A well known form of plug, the Bosch, is shown by Fig. 99 a-b. In this plug a special material known as Steatite is used instead of the usual porcelain. The three external electrodes surrounding the center electrode is a particularly efficient arrangement, especially for magnetos. A peculiar form of pocket minimizes the soot problem.

As porcelain is brittle and is easily broken by the effects of heat or blows, mica insulation is often used in place of the porcelain. The central core of a mica plug is formed by a stack of mica washers, which are held in place by the central electrode and the upper lock nuts.

A poorly constructed mica plug is easily destroyed by a weak, stretching, electrode, or by an overheated cylinder. The latter causing the washers to shrink and admit oil between the layers of mica washers causes a short circuit. As soon as the mica washers loosen and separate, they should be forced together by means of the mica lock nuts on the top of the plug.