The circulation of the cooling water set up by the action of heat or the expansion of the water is called Natural or Thermo Syphon circulation.

Cooling tanks may be used profitably with stationary engines if the tank can be located so that vapor and steam produced will not be objectionable. If the tank is used inside of a building, the vapor should be conveyed to the outside air by means of a stack or chimney, or by means of a small ventilating fan driven by the engine.

The water consumption of a cooling tank is from .3 to .6 gallons per hour, the exact quantity varying with the atmospheric conditions and temperature.

Fig. 124-a. De Dion Bonton “V” Type, Air Cooled Aero Motor. The Cooling Air is Furnished by a Blower Mounted on the Crank Shaft at the Rear of the Motor. The Propeller is Driven from the Cam Shaft. Courtesy of Aero.

For engines of from 10 to 50 horsepower a battery of cooling tanks may be used, the number depending on the size of the engine. For natural circulation, the tank should be installed so that bottom of the tank is above the bottom of the cylinder for maximum results, if placed much lower the engine should be provided with a circulating pump.

If water is used from the city mains from 10 to 15 gallons will be required per horsepower hour, the exact quantity varies with the temperature of the supply.

The water from very large stationary engines is cooled by allowing it to trickle down through a cooling tower, which is built somewhat like the screen cooler only on a larger scale. The object of the cooling tower is to present the greatest possible surface of water to the air, this is accomplished by screens or baffles that turn the water over and over as it falls. The water, well cooled, finally collects in a cistern at the base of the tower from which it is pumped back to the engine and thus is used over and over again. This is an ideal system when water is expensive and when engines of considerable power are used.

(126) Cooling System Troubles.

Overheating caused by deposits of scale or lime in the jacket is one of the most common causes of an excessively hot cylinder. When hard water containing much lime is heated, the lime is deposited as a solid on the walls of the vessel forming a hard, dense, non-conducting sheet. When scale is deposited on the outside of the cylinder walls it prevents the transfer of the heat from the cylinder to the cooling water and consequently is the cause of the cylinder overheating. Besides acting as an insulator or heat, the deposit also causes trouble by obstructing the pipes and water passages, diminishing the water supply and aggravating the trouble.