According to the methods adopted in applying the heat of combustion to the working medium, heat engines are divided into two general classes, (1) External combustion engines, (2) Internal combustion engines. The expressions “Internal” or “External” refer to the point at which combustion takes place in regard to the working cylinder, thus an internal combustion engine is one in which the combustion takes place in the working cylinder, and an external combustion engine is one in which the combustion takes place outside of the working cylinder. The steam engine is an example of an external combustion engine, the fuel being burned in the furnace of a boiler which is independent of the engine cylinder proper. As the fuel is burned directly in the cylinder of a gas engine it is commonly known as an internal combustion engine.
An external combustion engine, such as the steam engine is subject to many serious heat losses because of the indirect method by which the heat is supplied to the working cylinder, aside from the losses in the cylinder. Much of the heat goes up the smoke stack and much is radiated from the boiler settings and the steam pipes that lead to the engine. The greatest loss however is due to the fact that the range of temperatures in the working cylinder is very low compared to the temperatures attained in the boiler furnace, for it is practically impossible to have a greater range than 350°F to 100°F with a steam engine, while the furnace temperatures may run up to 2500°F and even beyond.
High temperatures with a steam engine result in the development of enormous pressures, a temperature of 547°F corresponding to an absolute pressure of 1000 pounds per square inch. This pressure would require an extremely heavy and inefficient engine because of the terrific strains set up in the moving parts. The pressures established by air as a working medium are very much lower than those produced by air or any permanent gas at the same temperature, and for this reason it is possible to exceed a working temperature of over 3000°F in the cylinder of a gas engine without meeting with excessive pressures. This high working temperature is one of the reasons of the extremely high efficiency of the gas engine.
In order to compete with the gas engine from the standpoint of efficiency, the steam engine builders have resorted to super-heating the steam after it has left the boiler in order to increase the temperature range in the cylinder. By applying additional heat to the steam after it has passed out of contact with the water it is possible to obtain up to 600°F without material increase in the pressure, but the practical gains have not been great enough to approach the gas engine with its 3000°F. After reaching his maximum temperature at this comparatively low pressure, the steam engineer has still to eliminate a number of other losses that do not obtain with the gas engine.
Since the radiation losses of a burning fuel are proportional to the time required for burning, it is evident that the rate of combustion has much to do with the efficient development of the heat contained in it, and it is true that rapid combustion develops more useful heat from a given fuel than slow. In the gas engine the combustion is practically instantaneous with a low radiation loss, but in the steam engine the rate is slow, and with the excess of air that must necessarily be supplied, a great part of the value of the fuel is lost before reaching the water in the boiler. The temperature of the medium determines the efficiency of the engine and as rapid combustion increases the temperature it is evident that the gas engine again has the best of the problem.
In the case of the gas engine where the fuel (in gaseous form) is drawn directly into the working cylinder in intimate contact with the working medium (air) and in the correct proportions for complete combustion, each particle of fuel, when ignited, applies its heat to the adjacent particle of air instantly and increases its volume with a minimum loss by radiation.
A gas engine is practically a steam engine with the furnace placed directly in the working cylinder with all intervening working mediums removed, the gases of combustion acting as the working medium. It derives its power from the instantaneous combustion of a mixture of fuel and air in the cylinder, the expansion of which causes pressure on the piston. Under the influence of the pressure on the piston, the crank is turned through the connecting rod and delivers power to the belt wheel where it is available for driving machinery. Whether the fuel be of solid, liquid, or gaseous origin it is always introduced into the cylinder in the form of a gas.
Fig. 1-b. The English Adams Automobile Motor (End View), Showing the Magneto Driven by Spiral Gears at Right Angles to the Crank-Shaft.