Fig. 19. Cross-Section Through Typical Four Cylinder Automobile Engine. Courtesy of the Chicago Technical College.

In the section of cylinder No. 3, we see the water space surrounding the upper portion of the cylinder with the opening (37) connected to the water manifold (36), through which the water leaves the cylinder and passes to the radiator. At the lower end of the stroke is the piston, one-half of which is shown in section and one-half in elevation so that internal and external appearance may be readily seen. The piston pin (60) is located approximately in the center of the piston to which it is secured by means of the set-screw (61).

By means of the connecting rod (56), the motion of the piston is transmitted to the crank-shaft throw (54), both ends of which are provided with bronze bushings (59) and (58), fitting on the piston pin and crank-pin respectively. Between each crank throw are the main crank shaft bearings (55) which are provided with the bronze bushings (54). Below the connecting rod ends is the small drip trough containing oil into which the pipes on the rod ends dip when passing around the lower end of the stroke. When the pipes enter the oil puddle a small amount of lubricating oil is driven into the crank-pin bearing because of the force of impact, this force also causing oil to splash about in the crank case for the lubrication of the main crank shaft bearings and cam shaft. In order to maintain a constant level of oil in the puddle so that the bearings shall receive a constant supply of oil, a small overflow opening is placed in the center of the puddle which allows an excess of oil to overflow into the return oil sump below.

This excess of oil drains by gravity back to the oil circulating pump (73), at the right which again forces the oil to the various bearings. In this way, the same oil is used over and over again until it becomes unfit for lubricating purposes because of dirt or decomposition. The oil pump is driven from the cam-shaft through the level gears (66) and the vertical shaft (72). To the right of the oil pump is the fly-wheel (75) which furnishes the power for the idle strokes of the engine.

At the upper end of the vertical shaft that drives the oil pump is an extension (68) which passes through the bearing (70) and drives the ignition timer shown at the top of the housing (69). The timer controls the period of ignition in the cylinders in regard to the piston position so that the spark occurs at the end of the compression stroke. At the extreme left of the engine is the radiator fan (1) which is driven from the crank-shaft pulley (16), the belt (10), and the fan pulley (1122). This fan increases the amount of cold air that is drawn through the radiator, (mounted to the left of the engine) and increases its capacity for cooling the jacket water of the engine. The water circulating pump is located on the opposite side of the motor.

Fig. 19-a. Buda Four Cylinder Automobile Motor. Carburetor Side.

Fig. 19-b. Buda Motor, Pump Side, Cylinders “En Bloc.”