The seven cylinders are arranged radially, as will be seen in Fig. 50, each being spaced at an equal distance from the crank shaft and at equal angles with one another, the arrangement in general being similar to that of the “Gyro” motor shown in the preceding section. All cylinders are turned out of solid forged steel bars, the cylinder walls being only 1.2 millimeters thick after the machining operation. This results in the strongest and lightest cylinder possible to build, as all superfluous material is removed and the chances of defects in the material are reduced to a minimum as the character of the metal is revealed by the extended machining operations.
Fig. 51. Firing Diagram of Seven Cylinder Rotary Motor. On Starting at Cylinder No. 1, and Following the Zig-Zag Line in the Direction of the Arrows, it Will be Seen that Ignition Occurs at Every other Cylinder at even Intervals Through Two Revolutions, Ending at Cylinder No. 1.
As the motor operates on the four stroke cycle system, an odd number of cylinders is chosen in order that the firing may be carried out through equal angles in the revolution to obtain a uniform turning movement. Since a four stroke motor must complete two revolutions before all of the cylinders have fired, or completed their routine of events, it is evident that the number of cylinders must be odd in order to bring the last cylinder into firing position in the last revolution. When seven cylinders are used, the cylinder are fired alternately as they pass a given fixed point, that is, one cylinder is fired, the next skipped, the third fired, and the fourth skipped, and so on around the circle, so that the firing order in terms of the cylinder numbers is 1, 3, 5, 7, 2, 4, 6. The cylinders fired in the first revolution in order are 1, 3, 5, 7, and in the second revolution, 7, 2, 4, 6, the cylinder 7 being common to both revolutions. The cylinders are numbered according to their position on the engine, and NOT according to the firing sequence. See Fig. 51.
Fig. 52. Firing Diagram of Six Cylinder Rotary Motor. On Following the Zig-Zag Line it Will be Seen that All of the Cylinders Are Not Fired at Equal Intervals. In Some Cases Two Adjacent Cylinders Fire in Sequence, and in Others Two or Three Spaces are Jumped.
With a six cylinder engine it is possible to fire the cylinders in two ways, the first being in direct rotation; 1, 2, 3, 4, 5, 6 thus obtaining, six impulses in the first revolution, and none in the second. The second method is to fire them alternately, 1, 3, 5, 2, 4, 6, in which case the engine will have turned through equal angles between impulses 1 and 3, and 3 and 5, but through a greater angle between 5 and 2, and even again between 2 and 4, and 4 and 6. See Fig. 52.
Mixture is drawn into the cylinder by the suction of the piston through an inlet valve in the piston head, in practically the same way as in the “Gyro” motor, but unlike the latter motor, the valve is lifted by the suction (automatic valve) and not by the mechanical actuation of the connecting rod. The inlet valve is balanced against the effects of centrifugal force by a small counter-weight in the piston head, and the valve is held normally on its seat by a flat spring acting on the valve stem. The gases are brought into the crank case from the carburetor through the hollow crank-shaft as described elsewhere. See Fig. 53.
Fig. 53. Longitudinal Section Through Gnome Rotary Motor.