As the pistons continue to move outwards the gases continue to issue from the exhaust port at practically atmospheric pressure until the position shown by diagram (c) is reached by piston P2. At this point P2 is just opening the inlet port N allowing fresh air to enter the cylinder for the purpose of scavenging the engine. The passage of the air through the intake port N and out through the exhaust port M continues until the pistons pass the outer dead center, shown by diagram (d), and begin to come back on the return stroke. In diagram (e) the pistons have traveled far enough to close both ports, and as the space between them is filled with pure air from that furnished by the port N, the pistons will continue to move toward one another on the compression stroke. When they have reached the end of their travel as shown by diagram A, the fuel is injected into the cylinder and combustion occurs due to the temperature of the high compression temperature.

This is the complete cycle of events made in two strokes, and it will be noted that the cycle has been accomplished without the use of valves. The compressed air for scavenging the cylinder is provided by air pumps that are driven from the connecting rods by a link motion. One low pressure pump for the scavenging and one high pressure pump for spraying the fuel into the cylinder against compression are provided. As the inside of the piston is always exposed to the atmosphere through the open ends of the cylinder and is never exposed to the heat of combustion, perfect cooling is secured, and as a matter of course, perfect lubrication.

In the two cylinder engine in which four pistons are used, the cylinders are arranged in tandem with the two adjacent pistons, and the two outer pistons connected respectively. In fact the second cylinder pistons are duplicates of those just shown and are connected to the linkage in such a manner as to have the corresponding pistons in one cylinder act with the corresponding pistons in the second.

(34) Koerting Two Stroke Cycle Engine.

One of the most prominent of the two stroke cycle scavenging engines built for heavy stationary service is the Koerting engine. Because of its peculiar scavenging arrangement, and as it is of the double acting type, it will serve to illustrate the cycle of that class of engine equipped with independent air pumps. Several of these engines are in use in Europe that have an output of over 4,000 horse-power, the general arrangement of which is the same as shown in the accompanying diagram Fig. F-11.

Fig. F-11. Koerting Two Stroke Cycle Engine with Scavenging and Charging Cylinders.

Since the engine is double acting, two similar combustion chambers are provided at each end of the piston as shown by C and C1, and as each of the chambers gives one impulse per revolution because of the two stroke cycle, the single cylinder shown in the figure delivers two impulses per revolution to the crank-shaft. In order to have one exhaust port serve for both combustion chambers, the annular port E is placed in the center of the cylinder so that it is alternately opened to C and then C1 as the piston travels to and fro, the port being covered by the piston at intermediate points in its travel. As the piston must cover the port for a considerable portion of the stroke, it is made very long, nearly as long as the stroke. The piston rod R that connects the piston with the crank passes through the cylinder head of chamber C1, surrounded by a gas tight packing that prevents the leakage of the charge from C1.

Unlike the ordinary type of two stroke cycle engine, the two combustion chambers are provided with mechanically operated inlet valves, V-V1-V2-V3 that are opened at definite points in the stroke by the lay shaft X which is driven from the crank shaft. As the exhaust port E serves all of the functions of an exhaust valve, there are no valves provided at this point. Exhaust pipes connected to E carry the burnt gases to the atmosphere.

Two auxiliary air pumps of the double acting type are provided, shown at A and A2, one pumping gas and the other air. They are driven from the crank-shaft through the connecting rod Y, and are proportioned so that together they force a mixture of the correct proportion for complete combustion into the working cylinder at a pressure of about ten pounds per square inch. Air and gas are compressed on one side of each pump piston in the spaces B and B2, and the air and gas are drawn in on the other side as at H and H2. The connections from the compressor cylinders to the working cylinder are arranged so that the two crank ends of the compressor cylinders discharge into the crank end of the working cylinder, and the front ends of the compressors discharge into the front end of the working cylinder, the exact moment of discharge being controlled by the inlet valves V-V1-V2-V3. The pumps are arranged so that only pure air is admitted at first in order to force the products of combustion through the exhaust port so that they will not contaminate the following mixture of air and gas. The inlet valve opens immediately after the piston of the working cylinder uncovers the port E and reduces the pressure of the burnt gases to that of the atmosphere.