[888]. Arist. Phys. Δ, 1. 209 a 23; 3. 210 b 22 (R. P. 135 a).

[889]. Simpl. Phys. p. 562, 3 (R. P. 135). The version of Eudemos is given in Simpl. Phys. p. 563, 26, ἀξιοῖ γὰρ πᾶν τὸ ὂν ποῦ εἷναι· εἱ δὲ ὁ τόπος τῶν ὄντων, ποῦ ἂν εἴη· οὐκοῦν ἐν ἄλλῳ τόπῳ κἀκεῖνος δὴ ἐν ἄλλῳ καὶ οὕτως εἰς τὸ πρόσω.

[890]. Arist. Top. Θ, 8. 160 b 8, Ζήνωνος (λόγος), ὅτι οὐκ ἐνδέχεται κινεῖσθαι οὐδὲ τὸ στάδιον διελθεῖν.

[891]. Arist. Phys. Ζ, 9. 239 b 11 (R. P. 136). Cf. Ζ, 2. 233 a 11; a 21 (R. P. 136 a).

[892]. Arist. Phys. Ζ, 9. 239 b 14 (R. P. 137).

[893]. Phys. Ζ, 9. 239 b 30 (R. P. 138); ib. 239 b 5 (R. P. 138 a). The latter passage is corrupt, though the meaning is plain. I have translated Zeller’s version of it εἰ γάρ, φησίν, ἠρεμεῖ πᾶν ὅταν ᾖ κατὰ τὸ ἴσον, ἔστι δ’ ἀεὶ τὸ φερόμενον ἐν τῷ νῦν κατὰ τὸ ἴσον, ἀκίνητον, κ.τ.λ. Of course ἀεί means “at any time,” not “always,” and κατὰ τὸ ἴσον is, literally, “on a level with a space equal (to itself).” For other readings, see Zeller, p. 598, n. 3; and Diels, Vors. p. 131, 44.

[894]. The word is ὄγκοι; cf. Chap. VII. p. 338, [n. 794]. The name is very appropriate for the Pythagorean units, which Zeno had shown to have length, breadth, and thickness (fr. [1]).

[895]. Arist. Phys. Ζ, 9. 239 b 33 (R. P. 139). I have had to express the argument in my own way, as it is not fully given by any of the authorities. The figure is practically Alexander’s (Simpl. Phys. p. 1016, 14), except that he represents the ὄγκοι by letters instead of dots. The conclusion is plainly stated by Aristotle (loc. cit.), συμβαίνειν οἴεται ἴσον εἶναι χρόνον τῷ διπλασίῳ τὸν ἥμισυν, and, however we explain the reasoning, it must be so represented as to lead to this conclusion.

[896]. Plut. Per. 26 (R. P. 141 b), from Aristotle’s Σαμίων πολιτεία.

[897]. Diog. ix. 24 (R. P. 141). It is possible, of course, that Apollodoros meant the first and not the fourth year of the Olympiad. That is his usual era, the foundation of Thourioi. But, on the whole, it is more likely that he meant the fourth; for the date of the ναυαρχία would be given with precision. See Jacoby, p. 270.