[908]. This has been denied by Offner, “Zur Beurtheilung des Melissos” (Arch. iv. pp. 12 sqq.), but I now think he goes too far. Cf. especially Top. ix. 6, ὡς ἄμφω ταὐτὰ ὄντα τῷ ἀρχὴν ἔχειν, τό τε γεγονὸς καὶ τὸ πεπερασμένον. The same point is made in Soph. El. 167 b 13 and 181 a 27.

[909]. The words ἀλλ’ ἄπειρόν ἐστι mean simply “but it is without limit,” and this is simply a repetition of the statement that it has no beginning or end. The nature of the limit can only be determined by the context, and accordingly, when Melissos does introduce the subject of spatial infinity, he is careful to say τὸ μέγεθος ἄπειρον (fr. [3]).

[910]. Arist. Gen. Corr. i. 8. 325 a 14, ἓν καὶ ἀκίνητον τὸ πᾶν εἶναί φασι καὶ ἄπειρον ἔνιοι· τὸ γὰρ πέρας περαίνειν ἂν πρὸς τὸ κενόν. That this refers to Melissos has been proved by Zeller (p. 612, n. 2).

[911]. Note the disagreement with Zeno ([§ 162]).

[912]. The view of Bäumker that Melissos admitted ἀντιπερίστασις or motion in pleno (Jahrb. f. kl. Phil., 1886, p. 541; Das Problem der Materie, p. 59) depends upon some words of Simplicius (Phys. p. 104, 13), οὐχ ὅτι μὴ δυνατὸν διὰ πλήρους κινεῖσθαι, ὡς ἐπὶ τῶν σωμάτων λέγομεν κ.τ.λ. These words were formerly turned into Ionic and passed off as a fragment of Melissos. They are, however, part of Simplicius’s own argument against Alexander, and have nothing to do with Melissos at all.

[913]. See, however, Bäumker, Das Problem der Materie, pp. 57 sqq., who remarks that ἐόν (or ὄν) in fr. 9 must be the predicate, as it has no article. In his fifth edition (p. 611, n. 2) Zeller has adopted the view here taken. He rightly observes that the hypothetical form εἰ μὲν ὂν εἴη speaks for it, and that the subject to εἴη must be ἕκαστον τῶν πολλῶν, as with Zeno.

[914]. Met. Α, 5. 986 b 18 (R. P. 101).

[915]. Brandis changed the εἴη to ἔστι, but there is no warrant for this.

[916]. Cf. Zeno, fr. [1], especially the words εἰ δὲ ἔστιν, ἀνάγκη ἕκαστον μέγεθός τι ἔχειν καὶ πάχος.

[917]. Simpl. Phys. pp. 87, 6, and 110, 1.