The disproportion between the size of an atom and the size of an electron is vastly greater than that between the sun and the earth. Represent an atom, says Sir Oliver Lodge, by a church one hundred and sixty feet long, eighty feet broad, and forty feet high; the electrons are like gnats inside it. Yet on the electric theory of matter, electrons are all of the atom there is; there is no church, but only the gnats rushing about. We know of nothing so empty and hollow, so near a vacuum, as matter in this conception of it. Indeed, in the new physics, matter is only a hole in the ether. Hence the newspaper joke about the bank sliding down and leaving the woodchuck-hole sticking out, looks like pretty good physics. The electrons give matter its inertia, and give it the force we call cohesion, give it its toughness, its strength, and all its other properties. They make water wet, and the diamond hard. They are the fountain-head of the immense stores of the inter-atomic energy, which, if it could be tapped and controlled, would so easily do all the work of the world. But this we cannot do. "We are no more competent," says Professor Soddy, "to make use of these supplies of atomic energy than a savage, ignorant of how to kindle a fire, could make use of a steam-engine." The natural rate of flow of this energy from its atomic sources we get as heat, and it suffices to keep life going upon this planet. It is the source of all the activity we see upon the globe. Its results, in the geologic ages, are stored up for us in coal and oil and natural gas, and, in our day, are available in the winds, the tides, and the waterfalls, and in electricity.

IV

The electric constitution of matter is quite beyond anything we can imagine. The atoms are little worlds by themselves, and the whole mystery of life and death is in their keeping. The whole difference in the types of mind and character among men is supposed to be in their keeping. The different qualities and properties of bodies are in their keeping. Whether an object is hot or cold to our senses, depends upon the character of their vibrations; whether it be sweet or sour, poisonous or innocuous to us, depends upon how the atoms select their partners in the whirl and dance of their activities. The hardness and brilliancy of the diamond is supposed to depend upon how the atoms of carbon unite and join hands.

I have heard the view expressed that all matter, as such, is dead matter, that the molecules of hydrogen, oxygen, carbon, nitrogen, iron, phosphorus, calcium, and so on, in a living body, are themselves no more alive than the same molecules in inorganic matter. Nearly nine tenths of a living body is water; is not this water the same as the water we get at the spring or the brook? is it any more alive? does water undergo any chemical change in the body? is it anything more than a solvent, than a current that carries the other elements to all parts of the body? There are any number of chemical changes or reactions in a living body, but are the atoms and molecules that are involved in such changes radically changed? Can oxygen be anything but oxygen, or carbon anything but carbon? Is what we call life the result of their various new combinations? Many modern biologists hold to this view. In this conception merely a change in the order of arrangement of the molecules of a substance—which follows which or which is joined to which—is fraught with consequences as great as the order in which the letters of the alphabet are arranged in words, or the words themselves are arranged in sentences. The change of one letter in a word often utterly changes the meaning of that word, and the changing of a word in the sentence may give expression to an entirely different idea. Reverse the letters in the word "God," and you get the name of our faithful friend the dog. Huxley and Tyndall both taught that it was the way that the ultimate particles of matter are compounded that makes the whole difference between a cabbage and an oak, or between a frog and a man. It is a hard proposition. We know with scientific certainty that the difference between a diamond and a piece of charcoal, or between a pearl and an oyster-shell, is the way that the particles of carbon in the one case, and of calcium carbide in the other, are arranged. We know with equal certainty that the difference between certain chemical bodies, like alcohol and ether, is the arrangement of their ultimate particles, since both have the same chemical formula. We do not spell acetic acid, alcohol, sugar, starch, animal fat, vegetable oils, glycerine, and the like, with the same letters; yet nature compounds them all of the same atoms of carbon, hydrogen, and oxygen, but in different proportions and in different orders.

Chemistry is all-potent. A mechanical mixture of two or more elements is a simple affair, but a chemical mixture introduces an element of magic. No conjurer's trick can approach such a transformation as that of oxygen and hydrogen gases into water. The miracle of turning water into wine is tame by comparison. Dip plain cotton into a mixture of nitric and sulphuric acids and let it dry, and we have that terrible explosive, guncotton. Or, take the cellulose of which cotton is composed, and add two atoms of hydrogen and one of oxygen, and we have sugar. But we are to remember that the difference here indicated is not a quantitative, but a qualitative one, not one affecting bulk, but affecting structure. Truly chemistry works wonders. Take ethyl alcohol, or ordinary spirits of wine, and add four more atoms of carbon to the carbon molecule, and we have the poison carbolic acid. Pure alcohol can be turned into a deadly poison, not by adding to, but simply by taking from it; take out one atom of carbon and two of hydrogen from the alcohol molecule, and we have the poison methyl alcohol. But we are to remember that the difference here indicated is not a quantitative, but a qualitative one, not one affecting bulk, but affecting structure.

In our atmosphere we have a mechanical mixture of nitrogen and oxygen, four parts of nitrogen to one of oxygen. By uniting the nitrogen and oxygen chemically (N2O) we have nitrous oxide, laughing-gas. Ordinary starch is made up of three different elements—six parts of carbon, ten parts of hydrogen, and five parts of oxygen (C6H10O5). Now if we add water to this compound, we have a simple mixture of starch and water, but if we bring about a chemical union with the elements of water (hydrogen and oxygen), we have grape sugar. This sugar is formed in green leaves by the agency of sunlight, and is the basis of all plant and animal food, and hence one of the most important things in nature.

Carbon is a solid, and is seen in its pure state in the diamond, the hardest body in nature and the most valued of all precious stones, but it enters largely into all living bodies and is an important constituent of all the food we eat. As a gas, united with the oxygen of the air, forming carbon dioxide, it was present at the beginning of life, and probably helped kindle the first vital spark. In the shape of wood and coal, it now warms us and makes the wheels of our material civilization go round. Diamond stuff, through the magic of chemistry, plays one of the principle rôles in our physical life; we eat it, and are warmed and propelled by it, and cheered by it. Taken as carbonic acid gas into our lungs, it poisons us; taken into our stomachs, it stimulates us; dissolved in water, it disintegrates the rocks, eating out the carbonate of lime which they contain. It is one of the principal actors in the drama of organized matter.

V

We have a good illustration of the power of chemistry, and how closely it is dogging the footsteps of life, in the many organic compounds it has built up out of the elements, such as sugar, starch, indigo, camphor, rubber, and so forth, all of which used to be looked upon as impossible aside from life-processes. It is such progress as this that leads some men of science to believe that the creation of life itself is within the reach of chemistry. I do not believe that any occult or transcendental principle bars the way, but that some unknown and perhaps unknowable condition does, as mysterious and unrepeatable as that which separates our mental life from our physical. The transmutation of the physical into the psychical takes place, but the secret of it we do not know. It does not seem to fall within the law of the correlation and the conservation of energy.

Free or single atoms are very rare; they all quickly find their mates or partners. This eagerness of the elements to combine is one of the mysteries. If the world of visible matter were at one stroke resolved into its constituent atoms, it would practically disappear; we might smell it, or taste it, if we were left, but we could not see it, or feel it; the water would vanish, the solid ground would vanish—more than half of it into oxygen atoms, and the rest mainly into silicon atoms.