II

Any contrivance which shows an interdependence of parts, that results in unity of action, is super-mechanical. The solar system may be regarded as a unit, but it has not the purposive unity of a living body. It is one only in the sense that its separate bodies are all made of one stuff, and obey the same laws and move together in the same direction, but a living body is a unit because all its parts are in the service of one purposive end. An army is a unit, a flock of gregarious birds, a colony of ants or bees, is a unit because the spirit and purpose of one is the spirit and purpose of all; the unity is psychological.

Only living bodies are adaptive. Adaptation, of course, has its physics or its chemistry, because it is a physical phenomenon; but there is no adaptation of a rock or a clay-bank to its environment; there is only mechanical and chemical adjustment. The influence of the environment may bring about chemical and physical changes in a non-living body, but they are not purposive as in a living body. The fat in the seeds of plants in northern countries is liquid and solid at a lower temperature than in tropical climates. Living organisms alone react in a formative or deformative way to external stimuli. In warm climates the fur of animals and the wool of sheep become thin and light. The colder the climate, the thicker these coverings. Such facts only show that in the matter of adaptation among living organisms, there is a factor at work other than chemistry and physics—not independent of them, but making a purposive use of them. Cut off the central shoot that leads the young spruce tree upwards, and one of the shoots from the whirl of lateral branches below it slowly rises up and takes the place of the lost leader. Here is an action not prompted by the environment, but by the morphological needs of the tree, and it illustrates how different is its unity from the unity of a mere machine. I am only aiming to point out that in all living things the material forces behave in a purposive way to a degree that cannot be affirmed of them in non-living, and that, therefore, they imply intelligence.

Evidently the cells in the body do not all have the same degree of life,—that is, the same degree of irritability. The bone cells and the hair cells, for instance, can hardly be so much alive—or so irritable—as the muscle cells; nor these as intensely alive as the nerve and brain cells. Does not a bird possess a higher degree of life than a mollusk, or a turtle? Is not a brook trout more alive than a mud-sucker? You can freeze the latter as stiff as an icicle and resuscitate it, but not the former. There is a scale of degrees in life as clearly as there is a scale of degrees in temperature. There is an endless gradation of sensibilities of the living cells, dependent probably upon the degree of differentiation of function. Anæsthetics dull or suspend this irritability. The more highly developed and complex the nervous system, the higher the degree of life, till we pass from mere physical life to psychic life. Science might trace this difference to cell structure, but what brings about the change in the character of the cell, or starts the cells to building a complex nervous system, is a question unanswerable to science. The biologist imagines this and that about the invisible or hypothetical molecular structure; he assigns different functions to the atoms; some are for endosmosis, others for contraction, others for conduction of stimuli. Intramolecular oxygen plays a part. Other names are given to the mystery—the micellar strings of Naegeli, the biophores of Weismann, the plastidules of Haeckel; they all presuppose millions of molecules peculiarly arranged in the protoplasm.

On purely mechanical and chemical principles Tyndall accounts for the growth from the germ of a tree. The germ would be quiet, but the solar light and heat disturb its dreams, break up its atomic equilibrium. The germ makes an "effort" to restore it (why does it make an effort?), which effort is necessarily defeated and incessantly renewed, and in the turmoil or "scrapping" between the germ and the solar forces, matter is gathered from the soil and from the air and built into the special form of a tree. Why not in the form of a cabbage, or a donkey, or a clam? If the forces are purely automatic, why not? Why should matter be gathered in at all in a mechanical struggle between inorganic elements? But these are not all inorganic; the seed is organic. Ah! that makes the difference! That accounts for the "effort." So we have to have the organic to start with, then the rest is easy. No doubt the molecules of the seed would remain in a quiescent state, if they were not disturbed by external influences, chemical and mechanical. But there is something latent or potential in that seed that is the opposite of the mechanical, namely, the vital, and in what that consists, and where it came from, is the mystery.

III

I fancy that the difficulty which an increasing number of persons find in accepting the mechanistic view of life, or evolution,—the view which Herbert Spencer built into such a ponderous system of philosophy, and which such men as Huxley, Tyndall, Gifford, Haeckel, Verworn, and others, have upheld and illustrated,—is temperamental rather than logical. The view is distasteful to a certain type of mind—the flexible, imaginative, artistic, and literary type—the type that loves to see itself reflected in nature or that reads its own thoughts and emotions into nature. In a few eminent examples the two types of mind to which I refer seem more or less blended. Sir Oliver Lodge is a case in point. Sir Oliver is an eminent physicist who in his conception of the totality of things is yet a thoroughgoing idealist and mystic. His solution of the problem of living things is extra-scientific. He sees in life a distinct transcendental principle, not involved in the constitution of matter, but independent of it, entering into it and using it for its own purposes.

Tyndall was another great scientist with an inborn idealistic strain in him. His famous, and to many minds disquieting, declaration, made in his Belfast address over thirty years ago, that in matter itself he saw the promise and the potency of all terrestrial life, stamps him as a scientific materialist. But his conception of matter, as "at bottom essentially mystical and transcendental," stamps him as also an idealist. The idealist in him speaks very eloquently in the passage which, in the same address, he puts into the mouth of Bishop Butler, in the latter's imaginary debate with Lucretius: "Your atoms," says the Bishop, "are individually without sensation, much more are they without intelligence. May I ask you, then, to try your hand upon this problem. Take your dead hydrogen atoms, your dead oxygen atoms, your dead carbon atoms, your dead nitrogen atoms, your dead phosphorus atoms, and all the other atoms, dead as grains of shot, of which the brain is formed. Imagine them separate and sensationless, observe them running together and forming all imaginable combinations. This, as a purely mechanical process, is seeable by the mind. But can you see or dream, or in any way imagine, how out of that mechanical art, and from these individually dead atoms, sensation, thought, and emotion are to arise? Are you likely to extract Homer out of the rattling of dice, or the Differential Calculus out of the clash of billiard balls?" Could any vitalist, or Bergsonian idealist have stated his case better?

Now the Bishop Butler type of mind—the visualizing, idealizing, analogy-loving, literary, and philosophical mind—is shared by a good many people; it is shared by or is characteristic of all the great poets, artists, seers, idealists of the world; it is the humanistic type that sees man everywhere reflected in nature; and is radically different from the strictly scientific type which dehumanizes nature and reduces it to impersonal laws and forces, which distrusts analogy and sentiment and poetry, and clings to a rigid logical method.

This type of mind is bound to have trouble in accepting the physico-chemical theory of the nature and origin of life. It visualizes life, sees it as a distinct force or principle working in and through matter but not of it, super-physical in its origin and psychological in its nature. This is the view Henri Bergson exploits in his "Creative Evolution." This is the view Kant took when he said, "It is quite certain that we cannot even satisfactorily understand, much less explain, the nature of an organism and its internal forces on purely mechanical principles." It is the view Goethe took when he said, "Matter can never exist without spirit, nor spirit without matter."