I have succeeded, as I apprehend, in determining the relative weights of gold and oxygen, by two methods, which mutually corroborate each other. The first is by means of the nitrous gas generated by the solution of gold; and the second is, by finding what quantity of green oxide of iron is converted into red by precipitating a given weight of gold in solution.
Ten grains of guinea gold of the sp. gr. 17.3, were repeatedly dissolved in a small excess of nitro-muriatic acid; the quantity and purity of the nitrous gas generated were duly observed and allowance made for the loss occasioned by a small portion of common air originally in the gas bottle. The volume of nitrous gas corrected as above was always found between 1100 and 1200 grain measures, the weight of which may be estimated at 1.6 grains, corresponding to 1.4 grains of oxygen. The small portion of alloy (¹/₁₂) known to be in standard gold is chiefly copper with a small part silver; now it will be seen in the sequel that copper takes ¼ of its weight of oxygen; hence if we allow .8 of a grain for copper and .2 for the oxygen combining with it, we shall have 9.2 gold united to 1.2 oxygen, or 100 gold with 13 oxygen, which is nearly the same as Berzelius has determined by precipitating the gold by mercury.—Again, 10 grains of gold were dissolved as above (= 9.2 pure) and precipitated by a solution of pure green sulphate of iron of the sp. gr. 1.181 and which I had previously proved to contain 9 grains of green oxide in 100 measures. They converted 120 measures of this green sulphate into yellow, which was carefully precipitated afterwards by lime water, dried and weighed. The gold precipitated was found very nearly 9 grains; and the yellow oxide of iron mixed with oxide of copper was nearly 13 grains. Now 120 measures sulphate iron contain 10.8 grains green oxide, and these require ¹/₉ of their weight of oxygen (see the oxides of iron) to be changed into yellow oxide, or 1.2 oxygen. Hence it appears that the oxygen combined with the gold was transferred to the iron unchanged in quantity. It is to be observed however that green oxide of iron not only deoxidates the gold but it semideoxidates the copper also; so that .1 of the transferred oxygen above might be said to be derived from the copper, and the rest, or 1.1 from the 9 grains of gold; this would give 100 gold to 12.2 oxygen, which is still nearer to the determination of Berzelius. Upon the whole I am inclined to adopt the proportion of 8 to 1 or 100 to 12.5 as that which appears the most correct approximation and at the same time a ratio easily remembered and adapted to facilitate calculations.
We are now to consider whether the above is the protoxide. As no other oxide has been clearly shewn to exist, and as this combines with muriatic acid, with ammonia, with the oxide of tin, &c. and is wholly deoxidated by green sulphate of iron and by a moderate heat, there seems every reason to conclude it is a combination of the most simple kind, or 1 atom of metal to 1 of oxygen. Hence the atom of oxygen being 7, that of gold must be 56, and not 140 or 200, as stated Vol. 1, p. 250.
Berzelius seems to consider the above as the tritoxide, or three atoms of oxygen to one of gold; but it is extremely improbable that gold, which is allowed to have a weak affinity for oxygen, should be able to restrain the violent repulsion of three atoms of oxygen, and should on every occasion lose them all at once, and not by degrees, as is usual with other high oxides.
Subjoined are the results of various authors in regard to the oxide of gold, but generally given with diffidence as to their accuracy.
| gold | oxygen | ||
| Bergman | 100 | + | 10 |
| Proust | — | + | 8.57 to 31. |
| Oberkampf | — | + | 10 |
| Berzelius | — | + | 12 (4 suboxide) |
| My results | — | + | 12.5 |
Since writing the above I have had an opportunity of repeating the experiments on the oxide of gold by an improved nitrous gas apparatus, calculated almost entirely to exclude atmospheric air; I find less nitrous gas produced during the solution than stated above, sometimes by ⅓, and that it is variable according to the excess of nitric acid; also that the solution requires a portion of oxymuriatic acid as an equivalent for the nitrous gas retained. I prefer, however, the method of oxidizing the green sulphate of iron; by putting a small excess of the green sulphate and precipitating, first the red oxide and then the green, I obtained very distinct results. On the whole I am inclined to think my results preceding these have rather overrated the oxygen, and that it would as nearly be stated at 11 on the hundred. This would be nearly a mean of those in the above table, and would require the atom of gold to be 63, and that of the oxide 70. Between the two extremes of 56 and 63 it is most probable the true weight of the atom of gold will be found.
It may be proper to add that I have found 100 grain measures of muriatic acid (1.16), and 25 of nitric (1.35), are sufficient to dissolve 40 grains of standard gold; and I have reason to think the acids are in due proportion nearly, though different from what is usually recommended and employed.
2. Oxide of Platina.
Platina exhibits greater difficulties than gold in the investigation of its compounds with oxygen. It is not oxidized by heat; but by the explosion of an electric battery it is converted into a black powder, which is most probably the metal in extreme division, though it has been considered by some as the protoxide. Platina is capable of being oxidized and dissolved by nitro-muriatic acid, but less easily than gold; it requires more acid, as high or higher temperature and long continued digestion; nitrous gas is given out, during the solution, but sparingly. When lime or an alkali is added to the solution with a view to precipitate the oxide, a triple compound is usually formed of the acid, the oxide and the alkali, which is in most instances precipitated. This weighty compound renders the valuation of the oxygen in it very uncertain.