All the intermediate sizes of types appear to be made of one or other of the three preceding proportions or of mixtures of them, the smaller the type the more of antimony being required to give the requisite hardness. The largest types might, I conceive, be made with a much greater proportion of lead.

When 40 antimony and 360 lead (1 atom to 4) are fused together, the melting point is about 470°. The specific gravity was found 10.4, but probably too low from blisters or air bubbles. The alloy was more flexible than the preceding, but brittle with a fine grained fracture.

Forty parts antimony with 450 lead (1 atom to 5) fused at 490°, and gave 11 specific gravity. This alloy bends and breaks with a fine grained fracture.

Forty parts antimony with 540 lead (1 atom to 6) fused at 510°, and gave 10.8 specific gravity, which in all probability was owing to air bubbles. Now the alloy soft and malleable.

4. Lead and arsenic. When lead is fused in contact with the white oxide of arsenic under a film of tallow and stirred frequently, an union of the two metals takes place and the excess of white oxide is partially converted into arsenic and partly driven off, seemingly taking with it a portion of the lead. A considerable portion of the mass assumes the form of a black spongy compound infusible at the temperature. It contains a portion of the lead and is probably a compound of the metals with oxygen. The fusible alloy has the appearance of lead, but is brittle, breaks without bending and exhibits a fracture like that of antimony and lead. The specific gravity of the alloy is 10.6, or more if not saturated with lead. By treating it with an excess of nitric acid it is dissolved, and the lead may be thrown down by sulphuric acid, and the arsenic acid or oxide by lime. In this way I find the alloy is composed of about 9 parts of lead with 2 of arsenic, or 1 atom of each of the metals. The spongy mass treated with nitric acid yields a similar solution, accompanied with a precipitation of oxide of arsenic.

5. Lead and cobalt. The alloy of these two metals is not easily obtained, probably from the great difference of the temperature at which they fuse. Gmelin fused 1 part cobalt with 1, 2, 4, 6 and 8 parts of lead respectively. Alloys were obtained of the specific gravities 8.12, 12.28 (query 8.28?), —, 9.65 and 9.78 respectively. From these specific gravities it is plain the lead had been in great part dissipated by the heat. For the last or greatest specific gravity corresponds nearly to 2 parts lead and 1 of cobalt. (An. de Chimie, 19—357.)

Triple Alloys, Solders; Fusible Metal, &c.

Though it may seem premature to treat of triple compounds in the present chapter, which professedly is limited to compounds of two elements, yet as the triple alloys are few and so immediately connected with the preceding, it will scarcely require an apology for introducing them here.

Soft solders. Solders for plumbers and tin-workers, are required to melt easily, and yet not too low, as they should withstand a heat greater than boiling water. The fusing point of the soft solders is usually between 300-400°. Plumbers’ solder I believe is commonly formed by mixing equal parts of tin and lead. I procured a specimen of 8.9 specific gravity, and its fusing point was 380°. Probably a more perfect compound would be formed by mixing 104 parts tin with 90 lead (2 atoms to 1), which would give a specific gravity of 8.8 and the fusing point 350°.

Tin workers’ solder is made rather more fusible than that of the plumbers. A specimen I got from the workmen was 8.87 specific gravity and fused at 345°. A mixture of 3 parts tin and 2 of lead would have formed an alloy of the same fusibility, but the specific gravity would have been 8.6 or 8.7 only. Probably a rather less proportion of tin with a little bismuth entered into the composition.