(123.) But it is not enough to possess a standard of this abstract kind: a real material measure must be constructed, and exact copies of it taken. This, however, is not very difficult; the great difficulty is to preserve it unaltered from age to age; for unless we transmit to posterity the units of our measurements, such as we have ourselves used them, we, in fact, only half bequeath to them our observations. This is a point too much lost sight of, and it were much to be wished that some direct provision for so important an object were made.[37]
(124.) But, it may be asked, if our measurement of quantity is thus unavoidably liable to error, how is it possible that our observations can possess that quality of numerical veracity which is requisite to render them the foundation of laws, whose distinguishing perfection consists in their strict mathematical expression? To this the reply is twofold. 1st, that though we admit the necessary existence of numerical error in every observation, we can always assign a limit which such error cannot possibly exceed; and the extent of this latitude of error of observation is less in proportion to the perfection of the instrumental means we possess, and the care bestowed on their employment. In the greater part of modern measurements it is, in point of fact, extremely minute, and may be still further diminished, almost to any required extent, by repeating the measurements a great number of times, and under a great variety of circumstances, and taking a mean of the results, when errors of opposite kinds will, at length, compensate each other. But, 2dly, there exists a much more fundamental reply to this objection. In reasoning upon our observations, the existence and possible amount of quantitative error is always to be allowed for; and the extent to which theories may be affected by it is never to be lost sight of. In reasoning upwards, from observations confessedly imperfect to general laws, we must take care always to regard our conclusions as conditional, so far as they may be affected by such unavoidable imperfections; and when at length we shall have arrived at our highest point, and attained to axioms which admit of general and deductive reasoning, the question, whether they are vitiated by the errors of observation or not, will still remain to be decided, and must become the object of subsequent verification. This point will be made the subject of more distinct consideration hereafter, when we come to speak of the verification of theories and the laws of probability.
(125.) With respect to our record of observations, it should be not only circumstantial but faithful; by which we mean, that it should contain all we did observe, and nothing else. Without any intention of falsifying our record, we may do so unperceived by ourselves, owing to a mixture of the views and language of an erroneous theory with that of simple fact. Thus, for example, if, in describing the effect of lightning, we should say, “The thunderbolt struck with violence against the side of the house, and beat in the wall,” a fact would be stated which we did not see, and would lead our hearers to believe that a solid or ponderable projectile was concerned. The “strong smell of sulphur,” which is sometimes said to accompany lightning, is a remnant of the theory which made thunder and lightning the explosion of a kind of aërial gunpowder, composed of sulphureous and nitrous exhalations. There are some subjects particularly infested with this mixture of theory in the statement of observed fact. The older chemistry was so overborne by this mischief, as quite to confound and nullify the descriptions of innumerable curious and laborious experiments. And in geology, till a very recent period, it was often extremely difficult, from this circumstance, to know what were the facts observed. Thus, Faujas de St. Fond, in his work on the volcanoes of central France, describes with every appearance of minute precision craters existing no where but in his own imagination. There is no greater fault (direct falsification of fact excepted) which can be committed by an observer.
(126.) When particular branches of science have acquired that degree of consistency and generality, which admits of an abstract statement of laws, and legitimate deductive reasoning, the principle of the division of labour tends to separate the province of the observer from that of the theorist. There is no accounting for the difference of minds or inclinations, which leads one man to observe with interest the developements of phenomena, another to speculate on their causes; but were it not for this happy disagreement, it may be doubted whether the higher sciences could ever have attained even their present degree of perfection. As laws acquire generality, the influence of individual observations becomes less, and a higher and higher degree of refinement in their performance, as well as a great multiplication in their number, becomes necessary to give them importance. In astronomy, for instance, the superior departments of theory are completely disjoined from the routine of practical observation.
(127.) To make a perfect observer, however, either in astronomy or in any other department of science, an extensive acquaintance is requisite, not only with the particular science to which his observations relate, but with every branch of knowledge which may enable him to appretiate and neutralize the effect of extraneous disturbing causes. Thus furnished, he will be prepared to seize on any of those minute indications, which (such is the subtlety of nature) often connect phenomena which seem quite remote from each other. He will have his eyes as it were opened, that they may be struck at once with any occurrence which, according to received theories, ought not to happen; for these are the facts which serve as clews to new discoveries. The deviation of the magnetic needle, by the influence of an electrified wire, must have happened a thousand times to a perceptible amount, under the eyes of persons engaged in galvanic experiments, with philosophical apparatus of all kinds standing around them; but it required the eye of a philosopher such as Oërsted to seize the indication, refer it to its origin, and thereby connect two great branches of science. The grand discovery of Malus of the polarization of light by reflection originated in his casual remark of the disappearance of one of the images of a window in the Luxembourg palace, one evening, when strongly illuminated by the setting sun, viewed through a doubly refracting prism.
(128.) To avail ourselves as far as possible of the advantages which a division of labour may afford for the collection of facts, by the industry and activity which the general diffusion of information, in the present age, brings into exercise, is an object of great importance. There is scarcely any well-informed person, who, if he has but the will, has not also the power to add something essential to the general stock of knowledge, if he will only observe regularly and methodically some particular class of facts which may most excite his attention, or which his situation may best enable him to study with effect. To instance one or two subjects, which can only be effectually improved by the united observations of great numbers widely dispersed:—Meteorology, one of the most complicated but important branches of science, is at the same time one in which any person who will attend to plain rules, and bestow the necessary degree of attention, may do effectual service. What benefits has not Geology reaped from the activity of industrious individuals, who, setting aside all theoretical views, have been content to exercise the useful and highly entertaining occupation of collecting specimens from the countries which they visit? In short, there is no branch of science whatever in which, at least, if useful and sensible queries were distinctly proposed, an immense mass of valuable information might not be collected from those who, in their various lines of life, at home or abroad, stationary or in travel, would gladly avail themselves of opportunities of being useful. Nothing would tend better to attain this end than the circulation of printed skeleton forms, on various subjects, which should be so formed as, 1st, to ask distinct and pertinent questions, admitting of short and definite answers; 2dly, To call for exact numerical statement on all principal points; 3dly, To point out the attendant circumstances most likely to prove influential, and which ought to be observed; 4thly, To call for their transmission to a common centre.
CHAP. V.
OF THE CLASSIFICATION OF NATURAL OBJECTS AND PHENOMENA, AND OF NOMENCLATURE.