CHAP. VII.

OF THE HIGHER DEGREES OF INDUCTIVE GENERALIZATION, AND OF THE FORMATION AND VERIFICATION OF THEORIES.

(201.) As particular inductions and laws of the first degree of generality are obtained from the consideration of individual facts, so Theories result from a consideration of these laws, and of the proximate causes brought into view in the previous process, regarded all together as constituting a new set of phenomena, the creatures of reason rather than of sense, and each representing under general language innumerable particular facts. In raising these higher inductions, therefore, more scope is given to the exercise of pure reason than in slowly groping out our first results. The mind is more disencumbered of matter, and moves as it were in its own element. What is now before it, it perceives more intimately, and less through the medium of sense, or at least not in the same manner as when actually at work on the immediate objects of sense. But it must not be therefore supposed that, in the formation of theories, we are abandoned to the unrestrained exercise of imagination, or at liberty to lay down arbitrary principles, or assume the existence of mere fanciful causes. The liberty of speculation which we possess in the domains of theory is not like the wild licence of the slave broke loose from his fetters, but rather like that of the freeman who has learned the lessons of self-restraint in the school of just subordination. The ultimate objects we pursue in the highest theories are the same as those of the lowest inductions; and the means by which we can most securely attain them bear a close analogy to those which we have found successful in such inferior cases.

(202.) The immediate object we propose to ourselves in physical theories is the analysis of phenomena, and the knowledge of the hidden processes of nature in their production, so far as they can be traced by us. An important part of this knowledge consists in a discovery of the actual structure or mechanism of the universe and its parts, through which, and by which, those processes are executed; and of the agents which are concerned in their performance. Now, the mechanism of nature is for the most part either on too large or too small a scale to be immediately cognizable by our senses; and her agents in like manner elude direct observation, and become known to us only by their effects. It is in vain therefore that we desire to become witnesses to the processes carried on with such means, and to be admitted into the secret recesses and laboratories where they are effected. Microscopes have been constructed which magnify more than a thousand times in linear dimension, so that the smallest visible grain of sand may be enlarged to the appearance of one a thousand million times more bulky; yet the only impression we receive by viewing it through such a magnifier is, that it reminds us of some vast fragment of a rock, while the intimate structure on which depend its colour, its hardness, and its chemical properties, remains still concealed: we do not seem to have made even an approach to a closer analysis of it by any such scrutiny.

(203.) On the other hand, the mechanism of the great system of which our planet forms a part escapes immediate observation by the immensity of its scale, nay, even by the slowness of its evolutions. The motion of the minute hand of a watch can hardly be perceived without the closest attention, and that of the hour hand not at all. But what are these, in respect of the impression of slowness they produce in our minds, compared with a revolving movement which takes a whole year, or twelve, thirty, or eighty years to complete, as is the case with the planets in their revolutions round the sun. Yet no sooner do we come to reflect on the linear dimensions of these orbs, (which however we do not see, nor can we measure them but by a long, circuitous, and difficult process,) than we are lost in astonishment at the swiftness of the very motions which before seemed so slow.[47] The motion of the sails of a windmill offers (on a small scale) an illustrative case. At a distance the rotation seems slow and steady—but when we stand close to one of the sails in its sweep, we are surprised at the swiftness with which it rushes by us.

(204.) Again, the agents employed by nature to act on material structures are invisible, and only to be traced by the effects they produce. Heat dilates matter with an irresistible force; but what heat is, remains yet a problem. A current of electricity passing along a wire moves a magnetized needle at a distance; but except from this effect we perceive no difference between the condition of the wire when it conveys and when it does not convey the stream: and we apply the terms current, or stream, to the electricity only because in some of its relations it reminds us of something we have observed in a stream of air or water. In like manner we see that the moon circulates about the earth; and because we believe it to be a solid mass, and have never seen one solid substance revolve round another within our reach to handle and examine unless retained by a force or united by a tie, we conclude that there is a force, and a mode of connection, between the moon and the earth; though, what that mode can be, we have no conception, nor can imagine how such a force can be exerted at a distance, and with empty space, or at most an invisible fluid, between. (See [§ 148].)

(205.) Yet are we not to despair, since we see regular and beautiful results brought about in human works by means which nobody would, at first sight, think could have any thing to do with them. A sheet of blank paper is placed upon a frame, and shoved forwards, and after winding its way successively over and under half a dozen rollers, and performing many other strange evolutions, comes out printed on both sides. And, after all, the acting cause in this process is nothing more than a few gallons of water boiled in an iron vessel, at a distance from the scene of operations. But why the water so boiled should be capable of producing the active energy which sets the whole apparatus in motion is, and will probably long remain, a secret to us.

(206.) This, however, does not at all prevent our having a very perfect comprehension of the whole subsequent process. We might frequent printing-houses, and form a theory of printing, and having worked our way up to the point where the mechanical action commenced (the boiler of the steam-engine), and verified it by taking to pieces, and putting together again, the train of wheels and the presses, and by sound theoretical examination of all the transfers of motion from one part to another; we should, at length, pronounce our theory good, and declare that we understood printing thoroughly. Nay, we might even go away and apply the principles of mechanism we had learned in this enquiry to other widely different purposes; construct other machines, and put them in motion by the same moving power, and all without arriving at any correct idea as to the ultimate source of the force employed. But, if we were inclined to theorize farther, we might do so; and it is easy to imagine how two theorists might form very different hypotheses as to the origin of the power which alternately raised and depressed the piston-rod of the engine. One, for example, might maintain that the boiler (whose contents we will suppose that neither theorist has been permitted to examine) was the den of some powerful unknown animal, and he would not be without plausible analogies in the warmth, the supply of fuel and water, the breathing noises, the smoke, and above all, the mechanical power exerted. He would say (not without a show of reason), that where there is a positive and wonderful effect, and many strong analogies, such as materials consumed, and all the usual signs of life maintained, we are not to deny the existence of animal life because we know no animal that consumes such food. Nay, he might observe with truth, that the fuel actually consists of the chemical ingredients which constitute the chief food of all animals, &c.; while, on the other hand, his brother theorist, who caught a glimpse of the fire, and detected the peculiar sounds of ebullition, might acquire a better notion of the case, and form a theory more in consonance with fact.

(207.) Now, nothing is more common in physics than to find two, or even many, theories maintained as to the origin of a natural phenomenon. For instance, in the case of heat itself, one considers it as a really existing material fluid, of such exceeding subtlety as to penetrate all bodies, and even to be capable of combining with them chemically; while another regards it as nothing but a rapid vibratory or rotatory motion in the ultimate particles of the bodies heated; and produces a singularly ingenious train of mechanical reasoning to show, that there is nothing contradictory to sound dynamical principles in such a doctrine. Thus, again, with light: one considers it as consisting in actual particles darted forth from luminous bodies, and acted upon in their progress by forces of extreme intensity residing in the substances on which they strike; another, in the vibratory motion of the particles of luminous bodies, communicated to a peculiar subtle and highly elastic ethereal medium, filling all space, and conveyed through it into our eyes, as sounds are to our ears, by the undulations of the air.

(208.) Now, are we to be deterred from framing hypotheses and constructing theories, because we meet with such dilemmas, and find ourselves frequently beyond our depth? Undoubtedly not. Est quodam prodire tenus si non datur ultra. Hypotheses, with respect to theories, are what presumed proximate causes are with respect to particular inductions: they afford us motives for searching into analogies; grounds of citation to bring before us all the cases which seem to bear upon them, for examination. A well imagined hypothesis, if it have been suggested by a fair inductive consideration of general laws, can hardly fail at least of enabling us to generalize a step farther, and group together several such laws under a more universal expression. But this is taking a very limited view of the value and importance of hypotheses: it may happen (and it has happened in the case of the undulatory doctrine of light) that such a weight of analogy and probability may become accumulated on the side of an hypothesis, that we are compelled to admit one of two things; either that it is an actual statement of what really passes in nature, or that the reality, whatever it be, must run so close a parallel with it, as to admit of some mode of expression common to both, at least in so far as the phenomena actually known are concerned. Now, this is a very great step, not only for its own sake, as leading us to a high point in philosophical speculation, but for its applications; because whatever conclusions we deduce from an hypothesis so supported must have at least a strong presumption in their favour: and we may be thus led to the trial of many curious experiments, and to the imagining of many useful and important contrivances, which we should never otherwise have thought of, and which, at all events, if verified in practice, are real additions to our stock of knowledge and to the arts of life.