CHAP. IV.

OF THE EXAMINATION OF THE MATERIAL CONSTITUENTS OF THE WORLD.

Mineralogy.

(325.) The consideration of the history and structure of our globe, and the examination of the fossil contents of its strata, lead us naturally to consider the materials of which it consists. The history of these materials, their properties as objects of philosophical enquiry, and their application to the useful arts and the embellishments of life, with the characters by which they can be certainly distinguished one from another, form the object of mineralogy, taken in its most extended sense.

(326.) There is no branch of science which presents so many points of contact with other departments of physical research, and serves as a connecting link between so many distant points of philosophical speculation, as this. To the geologist, the chemist, the optician, the crystallographer, the physician, it offers especially the very elements of their knowledge, and a field for many of their most curious and important enquiries. Nor, with the exception of chemistry, is there any which has undergone more revolutions, or been exhibited in a greater variety of forms. To the ancients it could scarcely be said to be at all known, and up to a comparatively recent period, nothing could be more imperfect than its descriptions, or more inartificial and unnatural than its classification. The more important minerals in the arts, indeed, those used for economical purposes and those from which metals were extracted, had a certain degree of attention paid to them, for the sake of their utility and commercial value, and the precious stones for that of ornament. But until their crystalline forms were attentively observed and shown to be determinate characters on which dependence could be placed, no mineralogist could give any correct account of the real distinction between one mineral and another.

(327.) It was only, however, when chemical analysis had acquired a certain degree of precision and universal applicability that the importance of mineralogy as a science began to be recognized, and the connection between the external characters of a stone and its ingredient constituents brought into distinct notice. Among these characters, however, none were found to possess that eminent distinctness which the crystalline form offers; a character, in the highest degree geometrical, and affording, as might be naturally supposed, the strongest evidence of its necessary connection with the intimate constitution of the substance. The full importance of this character was, however, not felt until its connection with the texture or cleavage of a mineral was pointed out, and even then it required numerous and striking instances of the critical discernment of Haüy and other eminent mineralogists in predicting from the measurements of the angles of crystals which had been confounded together that differences would be found to exist in their chemical composition, all which proved fully justified in their result before the essential value of this character was acknowledged. This was no doubt in great measure owing to the high importance set by the German mineralogists on those external characters of touch, sight, weight, colour, and other sensible qualities, which are little susceptible, with the exception of weight, of exact determination, and which are subject to material variations in different specimens of the same mineral. By degrees, however, the necessity of ascribing great weight to a character so definite was admitted, especially when it was considered that the same step which pointed out the intimate connection of external form with internal structure furnished the mineralogist with the means of reducing all the forms of which a mineral is susceptible under one general type, or primitive form, and afforded grounds for an elegant theoretical account of the assumption of definite figures ab initio.

(328.) A simple and elegant invention of Dr. Wollaston, the reflecting goniometer, gave a fresh impulse to that view of mineralogy which makes the crystalline form the essential or leading character, by putting it in the power of every one, by the examination of even the smallest portion of a broken crystal, to ascertain and verify that essential character on which the identity of a mineral in the system of Haüy was made to depend. The application of so ready and exact a method speedily led to important results, and to a still nicer discrimination of mineral species than could before be attained; and the confirmation given to these results by chemical analysis stamped them with a scientific and decided character which they have retained ever since.

(329.) Meanwhile the progress made in chemical analysis had led to the important conclusion that every chemical compound susceptible of assuming the solid state assumed with it a determinate crystalline form; and the progress of optical science had shown that the fundamental crystalline form, in the case at least of transparent bodies, drew with it a series of optical properties no less curious than important in relation to the affections of light in its passage through such substances. Thus, in every point of view, additional importance became added to this character; and the study of the crystalline forms of bodies in general assumed the form of a separate and independent branch of science, of which the geometrical forms of the mineral world constituted only a particular case. Mineralogy, however, as a branch of natural history, remains still distinct either from optics or crystallography. The mineralogist is content, and thinks he has performed his task, if not as a natural historian at least as a classifier and arranger, if he only gives such a characteristic description of a mineral as shall effectually distinguish it from every other, and shall enable any one who may encounter such a body in any part of the world to impose on it its name, assign it a place in his system, and turn to his books for a further description of all that the chemist, the optician, the lapidary, or the artist, may require to know. Still this is no easy matter: the laborious researches of the most eminent mineralogists can hardly yet be said to have effectually accomplished it; and its difficulty may be appreciated by the small number of simple minerals, or minerals of perfectly definite and well-marked characters, which have been hitherto made out. Nor can this indeed be wondered at, when we consider that by far the greater portion of the rocks and stones which compose the external crust of the globe consists of nothing more than the accumulated detritus of older rocks, in which the fragments and powder of an infinite variety of substances are mingled together, in all sorts of varying proportions, and in such a way as to defy separation. Many of these rocks, however, so compounded, occur with sufficient frequency and uniformity of character to have acquired names and to have been usefully applied; indeed, in the latter respect, minerals of this description far surpass all the others. As objects of natural history, therefore, they are well worthy of attention, however difficult it may be to assign them a place in any artificial arrangement.

(330.) This paucity of simple minerals, however, is probably rather apparent than real, and in proportion as the researches of the chemist and crystallographer shall be extended throughout nature, they will no doubt become much more numerous. Indeed, in the great laboratories of nature it can hardly be doubted that almost every kind of chemical process is going forwards, by which compounds of every description are continually forming. Accordingly, it is remarked, that the lavas and ejected scoriæ of volcanoes are receptacles in which mineral products previously unknown are constantly discovered, and that the primitive formations, as they are called in geology, which bear no marks of having been produced by the destruction of others, are also remarkable for the beauty and distinctness of character of their minerals.