OF THE NATURE AND OBJECTS, IMMEDIATE AND COLLATERAL, OF PHYSICAL SCIENCE, AS REGARDED IN ITSELF, AND IN ITS APPLICATION TO THE PRACTICAL PURPOSES OF LIFE, AND ITS INFLUENCE ON THE WELL-BEING AND PROGRESS OF SOCIETY.
(26.) The first thing impressed on us from our earliest infancy is, that events do not succeed one another at random, but with a certain degree of order, regularity, and connection;—some constantly, and, as we are apt to think, immutably,—as the alternation of day and night, summer and winter,—others contingently, as the motion of a body from its place, if pushed, or the burning of a stick if thrust into the fire. The knowledge that the former class of events has gone on, uninterruptedly, for ages beyond all memory, impresses us with a strong expectation that it will continue to do so in the same manner; and thus our notion of an order of nature is originated and confirmed. If every thing were equally regular and periodical, and the succession of events liable to no change depending on our own will, it may be doubted whether we should ever think of looking for causes. No one regards the night as the cause of the day, or the day of night. They are alternate effects of a common cause, which their regular succession alone gives us no sufficient clue for determining. It is chiefly, perhaps entirely, from the other or contingent class of events that we gain our notions of cause and effect. From them alone we gather that there are such things as laws of nature. The very idea of a law includes that of contingency. “Si quis mala carmina condidisset, fuste ferito;” if such a case arise, such a course shall be followed,—if the match be applied to the gunpowder, it will explode. Every law is a provision for cases which may occur, and has relation to an infinite number of cases that never have occurred, and never will. Now, it is this provision, à priori, for contingencies, this contemplation of possible occurrences, and predisposal of what shall happen, that impresses us with the notion of a law and a cause. Among all the possible combinations of the fifty or sixty elements which chemistry shows to exist on the earth, it is likely, nay almost certain, that some have never been formed; that some elements, in some proportions, and under some circumstances, have never yet been placed in relation with one another. Yet no chemist can doubt that it is already fixed what they will do when the case does occur. They will obey certain laws, of which we know nothing at present, but which must be already fixed, or they could not be laws. It is not by habit, or by trial and failure, that they will learn what to do. When the contingency occurs, there will be no hesitation, no consultation;—their course will at once be decided, and will always be the same if it occur ever so often in succession, or in ever so many places at one and the same instant. This is the perfection of a law, that it includes all possible contingencies, and ensures implicit obedience,—and of this kind are the laws of nature.
(27.) This use of the word law, however, our readers will of course perceive has relation to us as understanding, rather than to the materials of which the universe consists as obeying, certain rules. To obey a law, to act in compliance with a rule, supposes an understanding and a will, a power of complying or not, in the being who obeys and complies, which we do not admit as belonging to mere matter. The Divine Author of the universe cannot be supposed to have laid down particular laws, enumerating all individual contingencies, which his materials have understood and obey,—this would be to attribute to him the imperfections of human legislation;—but rather, by creating them, endued with certain fixed qualities and powers, he has impressed them in their origin with the spirit, not the letter, of his law, and made all their subsequent combinations and relations inevitable consequences of this first impression, by which, however, we would no way be understood to deny the constant exercise of his direct power in maintaining the system of nature, or the ultimate emanation of every energy which material agents exert from his immediate will, acting in conformity with his own laws.
(28.) The discoveries of modern chemistry have gone far to establish the truth of an opinion entertained by some of the ancients, that the universe consists of distinct, separate, indivisible atoms, or individual beings so minute as to escape our senses, except when united by millions, and by this aggregation making up bodies of even the smallest visible bulk; and we have the strongest evidence that, although there exist great and essential differences in individuals among these atoms, they may yet all be arranged in a very limited number of groups or classes, all the individuals of each of which are, to all intents and purposes, exactly alike in all their properties. Now, when we see a great number of things precisely alike, we do not believe this similarity to have originated except from a common principle independent of them; and that we recognise this likeness, chiefly by the identity of their deportment under similar circumstances, strengthens rather than weakens the conclusion. A line of spinning-jennies[10], or a regiment of soldiers dressed exactly alike, and going through precisely the same evolutions, gives us no idea of independent existence: we must see them act out of concert before we can believe them to have independent wills and properties, not impressed on them from without. And this conclusion, which would be strong even were there only two individuals precisely alike in all respects and for ever, acquires irresistible force when their number is multiplied beyond the power of imagination to conceive. If we mistake not, then, the discoveries alluded to effectually destroy the idea of an eternal self-existent matter, by giving to each of its atoms the essential characters, at once, of a manufactured article, and a subordinate agent.
(29.) But to ascend to the origin of things, and speculate on the creation, is not the business of the natural philosopher. An humbler field is sufficient for him in the endeavour to discover, as far as our faculties will permit, what are these primary qualities originally and unalterably impressed on matter, and to discover the spirit of the laws of nature, which includes groups and classes of relations and facts from the letter which, as before observed, is presented to us by single phenomena: or if, after all, this should prove impossible; if such a step be beyond our faculties; and the essential qualities of material agents be really occult, or incapable of being expressed in any form intelligible to our understandings, at least to approach as near to their comprehension as the nature of the case will allow; and devise such forms of words as shall include and represent the greatest possible multitude and variety of phenomena.
(30.) Now, in this research there would seem one great question to be disposed of before our enquiries can even be commenced with any thing like a prospect of success, which is, whether the laws of nature themselves have that degree of permanence and fixity which can render them subjects of systematic discussion; or whether, on the other hand, the qualities of natural agents are subject to mutation from the lapse of time. To the ancients, who lived in the infancy of the world, or rather, in the infancy of man’s experience, this was a very rational subject of question, and hence their distinctions between corruptible and incorruptible matter. Thus, according to some among them, the matter only of the celestial spaces is pure, immutable, and incorruptible, while all sublunary things are in a constant state of lapse and change; the world becoming paralysed and effete with age, and man himself deteriorating in character, and diminishing at once in intellectual and bodily stature. But to us, who have the experience of some additional thousands of years, the question of permanence is already, in a great measure, decided in the affirmative. The refined speculations of modern astronomy, grounding their conclusions on observations made at very remote periods, have proved to demonstration, that one at least of the great powers of nature, the force of gravitation, the main bond and support of the material universe, has undergone no change in intensity from a high antiquity. The stature of mankind is just what it was three thousand years ago, as the specimens of mummies which have been examined at various times sufficiently show. The intellect of Newton, Laplace, or Lagrange, may stand in fair competition with that of Archimedes, Aristotle, or Plato; and the virtues and patriotism of Washington with the brightest examples of ancient history.
(31.) Again, the researches of chemists have shown that what the vulgar call corruption, destruction, &c., is nothing but a change of arrangement of the same ingredient elements, the disposition of the same materials into other forms, without the loss or actual destruction of a single atom; and thus any doubts of the permanence of natural laws are discountenanced, and the whole weight of appearances thrown into the opposite scale. One of the most obvious cases of apparent destruction is, when any thing is ground to dust and scattered to the winds. But it is one thing to grind a fabric to powder, and another to annihilate its materials: scattered as they may be, they must fall somewhere, and continue, if only as ingredients of the soil, to perform their humble but useful part in the economy of nature. The destruction produced by fire is more striking: in many cases, as in the burning of a piece of charcoal or a taper, there is no smoke, nothing visibly dissipated and carried away; the burning body wastes and disappears, while nothing seems to be produced but warmth and light, which we are not in the habit of considering as substances; and when all has disappeared, except perhaps some trifling ashes, we naturally enough suppose it is gone, lost, destroyed. But when the question is examined more exactly, we detect, in the invisible stream of heated air which ascends from the glowing coal or flaming wax, the whole ponderable matter, only united in a new combination with the air, and dissolved in it. Yet, so far from being thereby destroyed, it is only become again what it was before it existed in the form of charcoal or wax, an active agent in the business of the world, and a main support of vegetable and animal life, and is still susceptible of running again and again the same round, as circumstances may determine; so that, for aught we can see to the contrary, the same identical atom may lie concealed for thousands of centuries in a limestone rock; may at length be quarried, set free in the limekiln, mix with the air, be absorbed from it by plants, and, in succession, become a part of the frames of myriads of living beings, till some concurrence of events consigns it once more to a long repose, which, however, no way unfits it from again resuming its former activity.
(32.) Now, this absolute indestructibility of the ultimate materials of the world, in periods commensurate to our experience, and their obstinate retention of the same properties, under whatever variety of circumstances we choose to place them, however violent and seemingly contradictory to their natures, is, of itself, enough to render it highly improbable that time alone should have any influence over them. All that age or decay can do seems to be included in a wasting of parts which are only dissipated, not destroyed, or in a change of sensible properties, which chemistry demonstrates to arise only from new combinations of the same ingredients. But, after all, the question is one entirely of experience: we cannot be sure, à priori, that the laws of nature are immutable; but we can ascertain, by enquiry, whether they change or not; and to this enquiry all experience answers in the negative. It is not, of course, intended here to deny that great operations, productive of extensive changes in the visible state of nature,—such as, for instance, those contemplated by the geologists, and embracing for their completion vast periods of time,—are constantly going on; but these are consequences and fulfilments of the laws of nature, not contradictions or exceptions to them. No theorist regards such changes as alterations in the fundamental principles of nature; he only endeavours to reconcile them, and show how they result from laws already known, and judges of the correctness of his theory by their ultimate agreement.
(33.) But the laws of nature are not only permanent, but consistent, intelligible, and discoverable with such a moderate degree of research, as is calculated rather to stimulate than to weary curiosity. If we were set down, as creatures of another world, in any existing society of mankind, and began to speculate on their actions, we should find it difficult at first to ascertain whether they were subject to any laws at all: but when, by degrees, we had found out that they did consider themselves to be so; and would then proceed to ascertain, from their conduct and its consequences, what these laws were, and in what spirit conceived; though we might not perhaps have much difficulty in discovering single rules applicable to particular cases, yet, the moment we came to generalize, and endeavour from these to ascend, step by step, and discover any steady pervading principle, the mass of incongruities, absurdities, and contradictions, we should encounter, would either dishearten us from further enquiry or satisfy us that what we were in search of did not exist. It is quite the contrary in nature; there we find no contradictions, no incongruities, but all is harmony. What once is learnt we never have to unlearn. As rules advance in generality, apparent exceptions become regular; and equivoque, in her sublime legislation, is as unheard of as maladministration.
(34.) Living, then, in a world where such laws obtain, and under their immediate dominion, it is manifestly of the utmost importance to know them, were it for no other reason than to be sure, in all we undertake, to have, at least, the law on our side, so as not to struggle in vain against some insuperable difficulty opposed to us by natural causes. What pains and expense would not the alchemists, for instance, have been spared by a knowledge of those simple laws of composition and decomposition, which now preclude all idea of the attainment of their declared object! what an amount of ingenuity, thrown away on the pursuit of the perpetual motion, might have been turned to better use, if the simplest laws of mechanics had been known and attended to by the inventors of innumerable contrivances destined to that end! What tortures, inflicted on patients by imaginary cures of incurable diseases, might have been dispensed with, had a few simple principles of physiology been earlier recognised!