(43.) Between the physical sciences and the arts of life there subsists a constant mutual interchange of good offices, and no considerable progress can be made in the one without of necessity giving rise to corresponding steps in the other. On the one hand, every art is in some measure, and many entirely, dependent on those very powers and qualities of the material world which it is the object of physical enquiry to investigate and explain; and, accordingly, abundant examples might be cited of cases where the remarks of experienced artists, or even ordinary workmen, have led to the discovery of natural qualities, elements, or combinations which have proved of the highest importance in physics. Thus (to give an instance), a soap-manufacturer remarks that the residuum of his ley, when exhausted of the alkali for which he employs it, produces a corrosion of his copper boiler for which he cannot account. He puts it into the hands of a scientific chemist for analysis, and the result is the discovery of one of the most singular and important chemical elements, iodine. The properties of this, being studied, are found to occur most appositely in illustration and support of a variety of new, curious, and instructive views then gaining ground in chemistry, and thus exercise a marked influence over the whole body of that science. Curiosity is excited: the origin of the new substance is traced to the sea-plants from whose ashes the principal ingredient of soap is obtained, and ultimately to the sea-water itself. It is thence hunted through nature, discovered in salt mines and springs, and pursued into all bodies which have a marine origin; among the rest, into sponge. A medical practitioner[12] then calls to mind a reputed remedy for the cure of one of the most grievous and unsightly disorders to which the human species is subject—the goître—which infests the inhabitants of mountainous districts to an extent that in this favoured land we have happily no experience of, and which was said to have been originally cured by the ashes of burnt sponge. Led by this indication he tries the effect of iodine on that complaint, and the result establishes the extraordinary fact that this singular substance, taken as a medicine, acts with the utmost promptitude and energy on goître, dissipating the largest and most inveterate in a short time, and acting (of course, like all medicines, even the most approved, with occasional failures,) as a specific, or natural antagonist, against that odious deformity. It is thus that any accession to our knowledge of nature is sure, sooner or later, to make itself felt in some practical application, and that a benefit conferred on science by the casual observation or shrewd remark of even an unscientific or illiterate person infallibly repays itself with interest, though often in a way that could never have been at first contemplated.

(44.) It is to such observation, reflected upon, however, and matured into a rational and scientific form by a mind deeply imbued with the best principles of sound philosophy, that we owe the practice of vaccination; a practice which has effectually subdued, in every country where it has been introduced, one of the most frightful scourges of the human race, and in some extirpated it altogether. Happily for us we know only by tradition the ravages of the small-pox, as it existed among us hardly more than a century ago, and as it would in a few years infallibly exist again, were the barriers which this practice, and that of inoculation, oppose to its progress abandoned. Hardly inferior to this terrible scourge on land was, within the last seventy or eighty years, the scurvy at sea. The sufferings and destruction produced by this horrid disorder on board our ships when, as a matter of course, it broke out after a few months’ voyage, seem now almost incredible. Deaths to the amount of eight or ten a day in a moderate ship’s company; bodies sewn up in hammocks and washing about the decks for want of strength and spirits on the part of the miserable survivors to cast them overboard; and every form of loathsome and excruciating misery of which the human frame is susceptible:—such are the pictures which the narratives of nautical adventure in those days continually offer.[13] At present the scurvy is almost completely eradicated in the navy, partly, no doubt, from increased and increasing attention to general cleanliness, comfort, and diet; but mainly from the constant use of a simple and palatable preventive, the acid of the lemon, served out in daily rations. If the gratitude of mankind be allowed on all hands to be the just meed of the philosophic physician, to whose discernment in seizing, and perseverance in forcing it on public notice we owe the great safeguard of infant life, it ought not to be denied to those[14] whose skill and discrimination have thus strengthened the sinews of our most powerful arm, and obliterated one of the darkest features in the most glorious of all professions.

(45.) These last, however, are instances of simple observation, limited to the point immediately in view, and assuming only so far the character of science as a systematic adoption of good and rejection of evil, when grounded on experience carefully weighed, justly entitle it to do. They are not on that account less appositely cited as instances of the importance of a knowledge of nature and its laws to our well-being; though, like the great inventions of the mariner’s compass and of gunpowder, they may have stood, in their origin, unconnected with more general views. They are rather to be looked upon as the spontaneous produce of a territory essentially fertile, than as forming part of the succession of harvests which the same bountiful soil, diligently cultivated, is capable of yielding. The history of iodine above related affords, however, a perfect specimen of the manner in which a knowledge of natural properties and laws, collected from facts having no reference to the object to which they have been subsequently applied, enables us to set in array the resources of nature against herself; and deliberately, of afore-thought, to devise remedies against the dangers and inconveniences which beset us. In this view we might instance, too, the conductor, which, in countries where thunder-storms are more frequent and violent than in our own, and at sea (where they are attended with peculiar danger, both from the greater probability of accident, and its more terrible consequences when it does occur,) forms a most real and efficient preservative against the effects of lightning[15]:—the safety-lamp, which enables us to walk with light and security while surrounded with an atmosphere more explosive than gunpowder:—the life-boat, which cannot be sunk, and which offers relief in circumstances of all others the most distressing to humanity, and of which a recent invention promises to extend the principle to ships of the largest class:—the lighthouse, with the capital improvements which the lenses of Brewster and Fresnel, and the elegant lamp of lieutenant Drummond, have conferred, and promise yet to confer by their wonderful powers, the one of producing the most intense light yet known, the others of conveying it undispersed to great distances:—the discovery of the disinfectant powers of chlorine, and its application to the destruction of miasma and contagion:—that of quinine, the essential principle in which reside the febrifuge qualities of the Peruvian bark, a discovery by which posterity is yet to benefit in its full extent, but which has already begun to diffuse comparative comfort and health through regions almost desolated by pestiferous exhalations[16];—and, if we desist, it is not because the list is exhausted, but because a sample, not a catalogue, is intended.

(46.) One instance more, however, we will add, to illustrate the manner in which a most familiar effect, which seemed destined only to amuse children, or, at best, to furnish a philosophic toy, may become a safeguard of human life, and a remedy for a most serious and distressing evil. In needle manufactories the workmen who point the needles are constantly exposed to excessively minute particles of steel which fly from the grindstones, and mix, though imperceptible to the eye, as the finest dust in the air, and are inhaled with their breath. The effect, though imperceptible on a short exposure, yet, being constantly repeated from day to day, produces a constitutional irritation dependent on the tonic properties of the steel, which is sure to terminate in pulmonary consumption; insomuch, that persons employed in this kind of work used scarcely ever to attain the age of forty years.[17] In vain was it attempted to purify the air before its entry into the lungs by gauzes or linen guards; the dust was too fine and penetrating to be obstructed by such coarse expedients, till some ingenious person bethought him of that wonderful power which every child who searches for its mother’s needle with a magnet, or admires the motions and arrangement of a few steel filings on a sheet of paper held above it, sees in exercise. Masks of magnetized steel wire are now constructed and adapted to the faces of the workmen. By these the air is not merely strained but searched in its passage through them, and each obnoxious atom arrested and removed.

(47.) Perhaps there is no result which places in a stronger light the advantages which are to be derived from a mere knowledge of the usual order of nature, without any attempt on our part to modify it, and apart from all consideration of its causes, than the institution of life-assurances. Nothing is more uncertain than the life of a single individual; and it is the sense of this insecurity which has given rise to such institutions. They are, in their nature and objects, the precise reverse of gambling speculations, their object being to equalize vicissitude, and to place the pecuniary relations of numerous masses of mankind, in so far as they extend, on a footing independent of individual casualty. To do this with the greatest possible advantage, or indeed with any advantage at all, it is necessary to know the laws of mortality, or the average numbers of individuals, out of a great multitude, who die at every period of life from infancy to extreme old age. At first sight this would seem a hopeless enquiry; to some, perhaps, a presumptuous one. But it has been made; and the result is, that, abating extraordinary causes, such as wars, pestilence, and the like, a remarkable regularity does obtain, quite sufficient to afford grounds not only for general estimations, but for nice calculations of risk and adventure, such as infallibly to insure the success of any such institution founded on good computations; and thus to confer such stability on the fortunes of families dependent on the exertions of one individual as to constitute an important feature in modern civilization. The only thing to be feared in such institutions is their too great multiplication and consequent competition, by which a spirit of gambling and underbidding is liable to be generated among their conductors, and the very mischief may be produced, on a scale of frightful extent, which they are especially intended to prevent.

(48.) We have hitherto considered only cases in which a knowledge of natural laws enables us to improve our condition, by counteracting evils of which, but for its possession, we must have remained forever the helpless victims. Let us now take a similar view of those in which we are enabled to call in nature as an auxiliary to augment our actual power, and capacitate us for undertakings, which without such aid might seem to be hopeless. Now, to this end, it is necessary that we should form a just conception of what those hidden powers of nature are, which we can at pleasure call into action;—how far they transcend the measure of human force, and set at naught the efforts not only of individuals but of whole nations of men.

(49.) It is well known to modern engineers, that there is virtue in a bushel of coals properly consumed, to raise seventy millions of pounds weight a foot high. This is actually the average effect of an engine at this moment working in Cornwall.[18] Let us pause a moment, and consider what this is equivalent to in matters of practice.

(50.) The ascent of Mont Blanc from the valley of Chamouni is considered, and with justice, as the most toilsome feat that a strong man can execute in two days. The combustion of two pounds of coal would place him on the summit.[19]

(51.) The Menai Bridge, one of the most stupendous works of art that has been raised by man in modern ages, consists of a mass of iron, not less than four millions of pounds in weight, suspended at a medium height of about 120 feet above the sea. The consumption of seven bushels of coal would suffice to raise it to the place where it hangs.

(52.) The great pyramid of Egypt is composed of granite. It is 700 feet in the side of its base, and 500 in perpendicular height, and stands on eleven acres of ground. Its weight is, therefore, 12,760 millions of pounds, at a medium height of 125 feet; consequently it would be raised by the effort of about 630 chaldrons of coal, a quantity consumed in some founderies in a week.