Figure 4 Comparison of potassium-40 disintegration methods.

Assume that the particular gamma ray is traveling in the direction of the scintillating liquid in the counter. Remember that the gamma ray is tiny in comparison with an atom, which is mostly empty space. Therefore, any one gamma ray probably will miss all the material part of the atoms in the body of the person being studied. Nor will it collide with anything as it passes through his clothes and the stainless steel tank. It also may fail to collide with any of the atoms in the molecules of scintillation liquid, of course. But let us assume that the one we are watching does make a hit there. Its total energy will be converted instantaneously to a flash of many bits or photons of light.

These photons radiate from the collision scene and strike a light-sensitive surface in one or more of the counter’s photomultiplier tubes, which have been placed where they can “see” the scintillation liquid. Energy transformations result, and a tiny pulse of electricity is originated. These photomultiplier devices are similar to the equipment in the familiar “electric eye” door openers. As their name suggests, photomultiplier tubes (see Figures [6] and [9]) do more than merely respond to the light flashes produced in the scintillation liquid. They also amplify the weak electron disturbances into electrical pulses to operate meters that record each scintillation and count the total.

The Geneva counter recorded about 25% of the total gamma rays emitted by each subject. Since this sample was a constant proportion of the total body radiation, it could be converted to whole body measurements with about 97% reliability.

In addition to finding persons with actual body contamination among those counted at Geneva, the 1955 counter revealed some interesting sideline information. People who failed to remove radium-dial watches were soon spotted. And one small boy who had picked up a sample of uranium ore at a nearby exhibit “jammed” the instrument.

Each of the 25 persons who were found to have above-normal levels of radiation could recall having worked with radium or some other radioactive substance at some time in the past.

THE LIQUID SCINTILLATION COUNTER

A visit to this type of counter recalls the first glimmers of scientific insight that the radiation in the human body could be counted. In the early 1950s, Frederick Reines and Clyde L. Cowan, two scientists at the Los Alamos Scientific Laboratory, Los Alamos, New Mexico, built a large liquid scintillation counter hoping to prove or disprove that neutrinos really existed. Neutrinos are elusive, uncharged particles with essentially no mass. They had been predicted in theory nearly 20 years earlier to explain how beta particles of different energy levels can be emitted from atoms with apparently identical nuclei.

Figure 5