The inflexible, mail-like crust, or shell, as it is commonly called, of the Echinus is perhaps one of the most marvellous objects on which the eye can rest. Although at first sight it appears to be a solid calcareous box, it is in reality composed of several hundred pentagonal plates,[17] of various sizes, so closely dove-tailed together that their marks of junction are scarcely perceptible. Upon a superficial examination we are apt (most erroneously) to consider this wonderful piece of work to be more elaborate than the wants of the animal demand. The fact of the Lobster or Crab throwing off its entire shell at certain seasons, to admit of the increased growth of the animal is a truly marvellous phenomenon, still, it would more excite our wonder were we to find that, instead of being cast away at all, the hard, inelastic envelope which surrounds the bodies of crustaceans was made to swell or expand proportionately with the soft parts of the animal! Now, the mosaic-like shell of the Sea-Urchin, though built up, as before stated, of several hundred pieces, is by a beautiful process slowly and imperceptibly enlarged correspondingly with the growth of the animal.
The gradual enlargement of the Echinus shell takes place in the following manner:—
Over the entire surface of the globular shell, spines, and joints of the living Urchin, there exists a delicate membrane that insinuates itself between the pentagonal plates above mentioned, and continually deposits around the edges a certain portion of calcareous matter (carbonate of lime). The same process being also carried on by the fleshy covering that surrounds the spines, &c., it must be evident that so long as the vital power of the animal exists, each plate and spine, still keeping to its original form, must be daily and hourly augmented in size until the Sea-Egg has attained its full and mature dimensions.
As to how the spines retain their relative position in each plate, as the latter gradually becomes enlarged, I cannot positively state; but may be permitted to mention, that, judging from carefully prepared sections of the plates when submitted to the microscope, each spine appeared to my eye to be by some singular process urged along in a kind of groove to its proper place.
The hedgehog-like spines that surround the globose body of the Sea-Urchin are all moveable at the will of the animal,—each prickle being connected by a ball-and-socket joint to a pearly tubercle, which acts as the 'socket' on which the 'ball' of the spine revolves. If the spine be removed, a comparatively smooth surface will be left, on which are various sized tubercles systematically arranged. Situated at regular intervals between the tubercles are ten broad bands, disposed in pairs, and containing many hundreds of very minute perforations, or ambulacral orifices, as they are generally termed by naturalists.
Through these apertures issue numerous sucker-like feet, closely resembling those of the Star-fish, but endowed with far greater powers of contraction and extension.
The number of suckers is very great. In an Urchin measuring exactly three inches in diameter, by aid of a hand lens, I counted no less than 3300 pores in the ten avenues. Now, these pores are always situated in pairs, and as each sucker occupies a pair of pores, it will give 1650 as the total amount of suckers.
There is no doubt that it is almost entirely by means of these curious organs that the Sea-Urchin is enabled to move about from place to place, although no less an authority than Professor Agassiz asserts to the contrary. 'How, in fact,' says this author, 'could these small tentacula, situated as they generally are in that part of the body which is never brought into contact with the ground when the animal moves, and overhung by calcareous solid spines—how, I ask, could these flexible tubes be used as organs of motion? It is an undeniable fact, and I have often observed it myself, that it is with their spines the Echini move themselves, seize their prey, and bring it to their mouths by turning the rays of their lower edge in different directions. But the correction of an error respecting the functions of the ambulacral tubes does not solve the problem relating to their nature and use. This problem we are yet unable to solve, as we know nothing more respecting them than that they are connected with the aquiferous system.'
Many other writers, among whom is Professor Forbes (from whose work on Star-fishes I have transferred the foregoing extract), assert, in opposition to the great Swiss naturalist, that the Echinidæ move by the joint action of their suckers and spines. 'The argument,' says the great British naturalist, 'against the suckers being organs of motion, founded on their position above as well as below, would equally apply to the spines, to which organs Professor Agassiz has attributed all progressive powers in these animals.'