Fig. 22, bis.
Fig. 22, bis. Adiantites Lindseæformis.
The preponderance of Ferns over flowering plants is seen at the present day in many tropical islands, such as St. Helena and the Society group, as well as in extra-tropical islands, as New Zealand. In the latter, Hooker picked 36 kinds in an area of a few acres; they gave a luxuriant aspect to the vegetation, which presented scarcely twelve flowering plants and trees besides. An equal area in the neighbourhood of Sydney (in about the same latitude) would have yielded upwards of 100 flowering plants, and only two or three Ferns. This Acrogenous flora, then, seems to favour the idea of a humid as well as mild and equable climate at the period of the coal formation—the vegetation being that of islands in the midst of a vast ocean. Lesquereux, in Silliman's Journal, gives three sections of Ferns in the Carboniferous strata—viz. Neuropterideæ, Pecopterideæ, and Sphenopterideæ. In Neuropterideæ fructification has been seen in Odontopteris. In this genus the spores are in a peculiar bladdery sporangium. In Neuropterideæ the fructification appears to have resembled Danæa in some cases, and Osmunda in others. Professor Geikie has noticed in the lower Carboniferous shales of Slateford, near Edinburgh, a fern which has been named Adiantites Lindseæformis by Bunbury (Fig. 22, bis). It has pinnules between crescent and fan shaped. (Mem. Geol. Survey of Edinburgh, 1861, p. 151.)
Among the Ferns found in the clays, ironstones, and sandstones of the Carboniferous period, we shall give the characters of some by way of illustration.[8] Pecopteris (Fig. 23) seems to be the fossil representative, if not congener, of Pteris. Pecopteris heterophylla (Fig. 24) has a marked resemblance to Pteris esculenta of New Zealand. The frond of Pecopteris is pinnatifid, or bi-tri-pinnatifid—the leaflets adhering to the rachis by the whole length of their base, sometimes confluent; the midrib of the leaflets runs to the point, and the veins come off from it nearly perpendicularly, and the fructification when present is at the end of the veins. Neuropteris (Figs. 25, 26, 27) has a pinnate or bipinnate frond, with pinnæ somewhat cordate at the base—the midrib of the pinnæ vanishing towards the apex, and the veins coming off obliquely, and in an arched manner. Neuropteris gigantea (Fig. 26) has a thick bare rachis, according to Miller, and seems to resemble much Osmunda regalis. Odontopteris has leaves like the last, but its leaflets adhere to the stalk by their whole base, the veins spring from the base of the leaflets, and pass on towards the point. Sphenopteris (Fig. 28) has a twice or thrice pinnatifid frond, the leaflets being narrowed at the base, often wedge-shaped, and the veins generally arranged as if they radiated from the base. Sphenopteris elegans resembled Pteris aquilina in having a stout leafless rachis, which divided at a height of seven or eight inches from its club-like base into two equal parts, each of which continued to undergo two or three successive bifurcations. A little below the first forking two divided pinnæ were sent off. A very complete specimen, with the stipe, was collected in the coalfield near Edinburgh by Hugh Miller, who has described it as above. Lonchopteris has its frond multi-pinnatifid, and the leaflets more or less united together at the base; there is a distinct midrib, and the veins are reticulated. Cyclopteris (Fig. 29) has simple orbicular leaflets, undivided or lobed at the margin, the veins radiating from the base, with no midrib. Schizopteris resembles the last, but the frond is deeply divided into numerous unequal segments, which are usually lobed and taper-pointed.
Fig. 23. Fig. 25. Fig. 26. Fig. 27.
Figs. 23 to 29 exhibit the fronds of some of the Ferns of the Carboniferous epoch. Fig. 23. Pecopteris (Alethopteris) aquilina. Fig. 24. Pecopteris (Alethopteris) heterophylla. Fig. 25. Neuropteris Loshii. Fig. 26. Neuropteris gigantea. Fig. 27. Neuropteris acuminata. Fig. 28. Sphenopteris affinis. Fig. 29. Cyclopteris dilatata.
Fig. 30. Fig. 31. Fig. 32.