A large dairy barn was built the last week of October, 1896, just out of New York City. It is 100 × 36, with 8-foot basement and 16-foot superstructure. We had four house carpenters and two laborers. Began work Monday morning, but were delayed by the non-arrival of the spikes till nearly noon. The basement bents were each 100 feet in length, and there were nine bents in the superstructure. Both basement and superstructure were raised on Friday of same week in six hours with the help of 30 men.
Still another example may be given to show the difference between the plank frame and the mortise and tenon frame. With three helpers I framed a barn, 40 × 72, with 20-foot posts, while two carpenters, one of them a foreman, framed the sills for a corn crib, 5 × 40.
The system has been introduced into 32 States and some fair sized barns have been built in this way. One in Kentucky, 56 × 100; one in Colorado, 60 × 70; one in Wisconsin, 40 × 120, with wing 40 × 60; one in Ontario, 56 × 96, and one in Virginia, 60 × 100. I have yet to learn of any who, having built strictly to specifications, are dissatisfied with the frame. On the contrary, we are frequently in receipt of letters from those who have thus built stating that they are delighted not only because they have saved both money and timber, but at the same time have obtained a thoroughly strong frame without the usual interior timbers, which are so much in the way in handling hay or grain.
I shall be glad to have the friendly criticism of practical builders given in the columns of Carpentry and Building. Any suggestions which may lead to further improvements in the system will be appreciated very much, and due credit will be given to those who suggest them. It will be seen that the system is especially adapted to large grain and hay barns, to cover barnyards, which are becoming so popular in many sections of the country, to tool sheds, tobacco barns, amphitheaters, &c.
While there is not so large a saving in the timber of the basement as in the superstructure, there is yet a fair saving of timber even here, and at the same time there is great saving of labor. The timbers are employed only where they can serve a useful purpose, and special effort is made to so place the timbers as to secure the maximum amount of strength with the smallest possible amount of timber.
The following communications were brought out as the result of Mr. Shawver’s invitation to the readers of Carpentry and Building:
Bracing a Basement Barn Built
on the Plank Frame System.
From E. S. H., Connecticut.—I have been reading the articles of Mr. Shawver on barn framing with a great deal of interest, and I am desirous of obtaining full instructions in regard to bracing the interior of a basement barn: also a complete bill of materials for the frame of such a barn, 40 × 60 feet in area, basement 8 feet high and superstructure 20 feet high. The roof is of the gable pattern, one-third pitch. There is also a bay in each end and a double driveway.
Answer.—In referring to the above inquiry, Mr. Shawver submits the following information, accompanied by the illustrations presented herewith: The sketches here given will explain in detail the manner of inserting the braces and the way in which they are made. Of course, when long braces will not interfere with the desired use of the space they are preferred to short ones, but short ones properly inserted will give the same rigidity to the plank frame that braces of similar length will give to a mortise and tenon frame. The braces C C of [Fig. 1] are inserted in the bents as the latter are constructed, but the brace shown in [Fig. 2] is not inserted until the barn is raised.