In high-tension circuits over which such pressures as 50,000 volts is transmitted, no little difficulty is experienced from leakage and consequent loss of energy. This leakage occurs both between the line conductors and at the insulators placed on the pole lines forming the line circuit. The insulators are made either of glass or porcelain, and are of a peculiar form known as triple petticoat pattern. The loss on such lines, due to leakage between wires, is greater than that which takes place at the pole insulators, and is diminished by keeping the circuit wires as far apart as possible.

In the early history of the art, electric transmission of power was effected by means of direct-current generators and motors,--generators and motors through which the current always passed in the same direction. Such generators and motors, however, possessed inconveniences that prevented extensive commercial transmission of power, since, as we have seen, high pressure was necessary for efficiency in such transmission, and the collecting-brushes and commutators employed in all direct-current generators and motors to carry the current from the machine or to the motor, were a constant source of trouble and danger.

When the alternating-current motor first same into general use, it was employed, in connection with the alternating-current generator, in electric transmission systems; but such motors also possess the inconvenience of not readily starting from a state of rest, with their full turning power, or torque, and of therefore being unsuitable where the motor requires to be frequently stopped or started. Had these difficulties remained unsolved, long-distance electric transmission of power, so successful in operation to-day, and which bids fair to be still more successful in the near future, would have been impossible. Fortunately, these difficulties were overcome by the genius of Nikola Tesla, in the invention of the multiphase alternating-current motor, or the induction motor, as it is now generally called. Although Baily, Deprez, and Ferraris had accomplished much before Tesla's time, yet it was practically to the investigations and discoveries made by Tesla, between 1887 and 1891, that the induction motor of to-day is due.

Another requirement of our twentieth-century civilization is rapid transit, either urban or inter-urban, and this is afforded by various systems of electric street railways or electric traction generally, including electric locomotives and electric automobiles. The wonderful growth in this direction which has been witnessed in the last few decades would have been impossible without the electric generator and motor, both gifts of Faraday to the world. Their application in this direction must, therefore, go to swell the debt our civilization owes to the labors of this great investigator.

In the system of electric street-car propulsion very generally employed to-day, a single trolley wheel is employed for taking the driving current from an overhead conductor, suspended above the street. The trolley wheel is supported by a trolley pole, and is maintained in good electric contact with the trolley wire, or overhead conductor. By this means the current passes from the wire down the conductor connected with the trolley pole, thence through the motors placed below the body of the car, and from them, through the track or ground-return, back to the power station. A small portion of the current is employed for lighting the electric lamps in the car. In some systems an underground trolley is employed.

An important device, called the series-parallel controller, is employed in all systems of electric street-car propulsion. It consists of means by which the starting and stopping of the car, and changes, both in its speed and direction, are placed under the control of the motorman. A separate controller is placed on both platforms of the car. The series-parallel controller consists essentially of a switch by means of which the several motors, that are employed in all street cars, can be variously connected with each other, or with different electric resistances, or can be successively cut out or introduced into the circuit, so that the speed of the car can be regulated at will, as the handle of the controller is moved by the motorman to the various notches on the top of the controller box. As generally arranged, the speed increases from the first notch or starting position to the last notch, movements in the opposite direction changing connections in the opposite order of succession, and, therefore, slowing the car. There is, however, no definite speed corresponding to each notch, for this will vary with the load on each car, and with the gradient upon which it may be running.

But there is another valuable gift received by the world as a result of this great discovery of Faraday; namely, that most marvellous instrument of modern times, the speaking telephone. This instrument was invented in 1861, by Philip Ries, and subsequently independently reinvented in 1876, by Elisha Gray and Alexander Graham Bell.

As is well known, it is electric currents and not sound-waves that are transmitted over a telephone circuit. The magneto-electric telephone in its simplest form consists of a pair of instruments called respectively the transmitter and the receiver. We talk into the transmitter and listen at the receiver. Both transmitter and receiver consist of a permanent magnet of hardened steel around one end of which is placed a coil of insulated wire. In front of this coil a diaphragm, or thin plate, of soft iron, is so supported as to be capable of freely vibrating towards and from the magnet pole.

The operation of the transmitting instrument is readily understood in the light of Faraday's discovery. It is simply a dynamo-electric machine driven by the voice of the speaker. As the sound-waves from the speaker's voice strike against the diaphragm, which has become magnetic from its nearness to the magnet pole, electric currents are generated in the coil of wire surrounding such pole, since the to-and-fro motions cause the lines of electro-magnetic force to pass through the wire on the moving coil. The operation of the receiving instrument is also readily understood. It acts as an electric motor driven by the to-and-fro currents generated by the transmitter. As these currents are transmitted over the wire, they pass through the coil of wire on the receiving instrument, and reproduce therein the exact movements of the transmitting diaphragm, since, as they strengthen or weaken the magnetism of the pole, they cause similar motions in the diaphragm placed before it. Consequently, one listening at the receiving diaphragm will hear all that is uttered into the transmitting diaphragm. It was thus, by the combination of the dynamo and motor, both of which were given by Faraday to the world, that we have received this priceless instrument, which has been so potent in its effects on the civilization of the Twentieth century.

The electric telegraph had its beginnings long before Faraday's time. As early as 1847, Watson had erected a line some two miles in length, extending over the housetops in London, and operated it by means of discharges from an ordinary frictional electric machine. In 1774, Lesage had erected in Geneva an electric telegraph consisting of a number of metallic wires, one for each letter of the alphabet. These wires were carefully insulated from each other. When a message was to be sent over this early telegraphic line an electric discharge was passed through the particular wire representing the letter of the alphabet to be sent; this discharge, reaching the other end, caused a pithball to be repelled and thus laboriously, letter by letter, the message was transmitted. How ludicrously cumbersome was such an instrument when contrasted with the Morse electro-magnetic telegraph of to-day, which requires but a single wire; or with the harmonic telegraph of Gray, which permits the simultaneous transmission of eight or more separate messages over a single wire; or with the wonderful quadruplex telegraphic system of Edison which permits the simultaneous transmission of four separate and distinct messages over a single wire, two in one direction, and two in the opposite direction at the same time; or with the still more wonderful multiplex telegraph of Delaney, which is able to simultaneously transmit as many as seventy-two separate messages over a single wire, thirty-six in one direction and thirty-six in the opposite direction. These achievements have been possible only through the researches and discoveries of Oersted, Faraday, and hosts of other eminent workers; for, it was the electro-magnet, rendered possible by Oersted, together with the magnificent discoveries of Faraday, and others since his time, that these marvellous advances in electro-telegraphic transmission of intelligence have become possibilities.