BY W.F. DURAND, PH.D.

The exact combination of inspiration, heredity, and environment which serves to produce genius will perhaps ever be a problem beyond the skill of human intelligence. When the rare elements do combine, however, the result is always worthy of most careful study, both because great achievements furnish a healthy stimulus to emulation, and because some glimpse may be gained of Nature's working in the formation of her rarest products.

Few lives better illustrate these remarks than that of John Ericsson. Born of middle-class parentage and with no apparent source of heredity from which to draw the stores of genius which he displayed throughout his life, and with surroundings in boyhood but little calculated to awaken and inspire the life-work which later made him famous, from this beginning and with these early surroundings John Ericsson became unquestionably the greatest of the engineers of the age in which he lived and of the century which witnessed such mighty advances along all engineering lines. The imprint left by Ericsson's life on the engineering practice of his age was deep and lasting, and if one may dare look into the future, the day is far removed when engineers will have passed beyond their dependence on his life and labors.

It is perhaps not amiss that, before looking more closely at the achievements of Ericsson's life and activity, note should be taken of the large dependence of our present civilization and mode of life on the engineer and his work.

In different ages of the world's history each has received its name, appropriate or fanciful as the case may have been. For the modern age no name is perhaps more adequately descriptive than the "Age of Energy," the age in which our entire fabric of civilization rests upon the utilization of the energies of nature for the needs of humanity, and to an extent little appreciated by those who have not considered the matter from this point of view. If we consider the various elements which enter into our modern civilization,--the items which enter into the daily life of the average man or woman; the items which we have come to consider as necessities and those which we may consider as luxuries; the items which go to make up our needs as expressed in terms of shelter, food, intercommunication between man and his fellow, and pleasure,--the most casual consideration of such will serve to show distributed throughout almost the entire fabric of our civilization dependence at some point on the power of the steam-engine, the water-wheel, or windmill, the subtle electric current, or the heat-energy of coal, petroleum oil, or natural gas. The harnessing and efficient utilization of these great natural energies is the direct function of the engineer, or more especially of the dynamic engineer, and in this noble guild of workers, Ericsson carved for himself an enduring place and left behind a record which should serve as an inspiration to all who are following the same pathway in later years.

No one feature perhaps better differentiates our modern civilization from that of earlier times, four hundred years ago, or even one hundred, than that of intercommunication between man and his fellow. Compare the opportunities for such intercommunication in the present with those in the time of Queen Elizabeth, Sir Isaac Newton, George Washington, or Napoleon I. We now have our steamships, steam and electric railroads, cable, telegraph, and telephone. A few years ago not a single one was known. The modern age is one which demands the utmost in the possibility of communication between man and his kind, and in this respect the wide world is now smaller than the confines of an English county a century ago.

In this field, as we shall see, Ericsson did some of his greatest work, and left perhaps his most permanent record for the future.

Ericsson's life falls most naturally into three periods chronologically or geographically, and likewise into three periods professionally, though the latter mode of subdivision has by no means the same boundaries as the former. The first mode of subdivision gives us the life in Sweden, the life in England, and the life in the United States. The second mode gives us the life of struggle and obscurity, the life of struggle, achievement, and recognition, and the calmer and easier life of declining years with recognition, reward, and the assurance of a life's work well done.

John Ericsson was born in the province of Vermland, Sweden, in 1803. His father was Olof Ericsson, a mine owner and inspector who was well educated after the standard of his times, having graduated at the college in Karlstad, the principal town of the province. His mother was Britta Sophia Yngstrom, a woman of Flemish-Scotch descent, and to whom Ericsson seems to have owed many of his stronger characteristics. Three children were born: Caroline in 1800, Nils in 1802, and John in 1803. Of John's earliest boyhood we have but slight record, but there seems to have been a clear foreshadowing of his future genius. He was considered the wonder of the neighborhood, and busied himself day after day with the machinery of the mines, drawing the form on paper with his rude tools or making models with bits of wood and cord, and endeavoring thus to trace the mystery of its operation.

In 1811 the Ericsson family fell upon evil times. Due to a war with Russia, business became disturbed and in the end Olof Ericsson became financially ruined. This brought the little family face to face with the realities of life, and we soon after find the father occupying a position as inspector on the Göta Canal, a project which was just then occupying serious attention after having been neglected for nearly one hundred years, and nearly three hundred years after it was first proposed in 1526. Through this connection, in 1815, John and Nils Ericsson were appointed as cadets in a corps of Mechanical Engineers to be employed in carrying out the Government's plans with reference to the canal. During the winter of 1816-17 and at the age of thirteen, John Ericsson received regular instruction from some of his officers in Algebra, Chemistry, Field Drawing, and Geometry, and the English language. Ericsson's education previous to this seems to have consisted chiefly in lessons at home or from tutors, after the manner of the time. He had thus received instruction in the ordinary branches and in drawing and some chemistry. His training in drawing seems to have been unusually thorough and comprehensive, and with a natural genius for such work, his later remarkable skill at the drawing board is doubtless in no small measure due to the excellent instruction which he received in his early years. His progress in his duties as a young engineer was rapid, and he was soon given employment in connection with the canal-work, involving much responsibility and calling for experience and skill.