It was in Newington Butts, in London, England, that the man-child first opened his eyes on the wonders of the physical world around him. To those eyes, in after years, were given a far deeper insight into the mysteries of nature than often falls to the lot of man. This man-child was Michael Faraday, who has been justly styled, by those best capable of judging him, "The Prince of Experimental Philosophers."
The precocity so common in the childhood of men of genius was apparently absent in the case of young Faraday. The growing boy played marbles, and worried through a scant education in reading, writing, and arithmetic, unnoticed, and most probably, for the greater part, severely left alone, as commonly falls to the lot of nearly all boys, whether ordinary or extraordinary. At the early age of thirteen, he was taken from school and placed on trial as errand-boy in the book-shop of George Ribeau, in London. After a year at this work, he was taken as an apprentice to the bookbinding trade, by the same employer, who, on account of his faithful services, remitted the customary premium. At this work he spent some eight years of his life.
But far be it from us even to hint at the absence of genius in the young child. Genius is not an acquired gift. It is born in the individual. Apart from the marvellous achievements of the man, a mere glance at the magnificent head, with its high intellectual forehead, the firm lips, the intelligent inquiring eyes, and the bright face, as seen in existing pictures, assures us that they portray an unusual individuality, incompatible with even a suspicion of belonging to an ordinary man. Doubtless the growing child did give early promise of his future greatness. Doubtless he was a formidable member of that terrible class of inquiring youngsters who demand the why and the wherefore of all around them, and refuse to accept the unsatisfactory belief of their fathers that things "are because they are." In its self-complacency, the busy world is too apt to fail to notice unusual abilities in children,--abilities that perhaps too often remain undeveloped from lack of opportunities. But whether young Faraday did or did not, at an early age, display any unusual promise of his life-work, all his biographers appear to agree that he could not be regarded as a precocious child.
Faraday disclaimed the idea that his childhood was distinguished by any precocity. "Do not suppose that I was a very deep thinker, or was marked as a precocious person," says Faraday, when alluding to his early life. "I was a very lively, imaginative person, and could believe in the 'Arabian Nights' as easily as the 'Encyclopaedia,' but facts were important to me, and saved me. I could trust a fact and always cross-examined an assertion. So when I questioned Mrs. Marcet's book [he is alluding to her 'Conversations on Chemistry'], by such little experiments as I could find means to perform, and found it true to the facts as I could understand them, I felt that I had got hold of an anchor in chemical knowledge, and clung fast to it."
But while there may be a question as to the existence of precocity in the young lad, there does not appear to be any reason for believing that his unusual abilities were the result of direct heredity. His father, an ordinary journeyman blacksmith, never exhibited any special intellectual ability, though possibly poverty and poor health may have been responsible for this failure. His mother, too, it appears, was of but ordinary mentality.
The environment of those early years--that is, from 1804 to 1813, while in the book-binding business--was far from calculated to develop any marked abilities inherent in our young philosopher. What would seem less calculated to inspire a wish to obtain a deeper insight into the mysteries of the physical world than the trade of book-binding, especially in the case of a boy whose scholastic education ceased at fourteen years and was limited to the mere rudiments of learning? But, fortunately for the world, the inquiring spirit of the lad led him to examine the inside of the books he bound, and thus, by familiarizing himself with their contents, he received the inspiration that good writing is always ready to bestow on those who properly read it. Two books, he afterwards informs us, proved of especial benefit; namely, "Marcet's Conversations on Chemistry," already referred to, and the "Encyclopaedia Britannica." To the former he attributes his grounding in chemistry, and to the latter his first ideas in electricity, in both of which studies he excelled in after years. As we have seen, even at this early age he followed the true plan for the physical investigator, cross-questioned all statements, only admitting those to the dignity of facts whose truth he had established by careful experimentation.
But our future experimental philosopher has not as yet fairly started on the beginnings of his life-work. The possibilities of the book-binding trade were too limited to permit much real progress. A circumstance occurred in the spring of 1812 that shaped his entire after-life. This was the opportunity then afforded him to attend four of the last lectures delivered at the Royal Institution, by the great Sir Humphry Davy. Faraday took copious notes of these lectures, carefully wrote them out, and bound them in a small quarto volume. It was this volume, which he afterwards sent to Davy, that resulted in his receiving, on March 1, 1813, the appointment of laboratory assistant in the Royal Institution. His pay for this work was twenty-five shillings a week, with a lodging on the top floor of the Institute, a very fair compensation for the times.
Very congenial were the duties of the young assistant. They were to keep clean the beloved apparatus of the lecturers, and to assist them in their demonstrations. The new world thus opened was full of bright promise. He keenly felt the deficiencies of his early education, and did his best to extend his learning, so that he might be able to make the most of his opportunities. But what he perhaps appreciated the most was the inspiration he received from the great teacher Davy, who was then Professor of Chemistry and Director of the Laboratory of the Royal Institution; for Faraday assisted at Davy's lectures, and in an humble way even aided his investigations, sharing the dangers arising from the explosion of the unstable substance, chloride of nitrogen, that Davy was then investigating. Faraday has repeatedly acknowledged the debt owed to the inspiration of this teacher. Davy also, in later life generously recognized, in his former assistant, a philosopher greater than himself. As the renowned astronomer, Tycho Brahe, discovered in one of his pupils, John Kepler, an astronomer greater than the master, and as Bergman, the Swedish chemist, in a similar manner, discovered the greater chemist Scheele, so when Davy, in after years, was asked what he regarded as his greatest discovery, he briefly replied, "Michael Faraday."
The task of the scientific historian, who endeavors honestly to record the progress of research, and to trace the influence of the work of some individual on the times in which he lived, is by no means an easy one; for, in scientific work one discovery frequently passes so insensibly into another that it is often difficult to know just where one stops and the other begins, and much difficulty constantly arises as to whom the credit should be given, when, as is too often the case, these discoveries are made by different individuals. It is only when some great discovery stands alone, like a giant mountain peak against the clear sky, that it is comparatively easy to determine the extent and character of its influence on other discoveries, and justly to give the credit to whom the credit is due. Such discoveries form ready points of reference in the intellectual horizon, and mark distinct eras in the world's progress. This is true of all work in the domain of physical science, but it is especially true in that of electricity and magnetism, in which Faraday was preeminent. The scope of each of these sciences is so extended, the number of workers so great, and the applications to the practical arts so nearly innumerable, that it is often by no means an easy task correctly to trace their proper growth and development.
Faraday's investigations covered vast fields in the domain of chemistry, electricity, and magnetism. It is to the last two only that reference will here be made. Faraday's life-work in electricity and magnetism began practically in 1831, when he made his immortal discovery of the direct production of electricity from magnetism. His best work in electricity and magnetism was accomplished between 1831 and 1856, extending, therefore, over a period of some twenty-five years, although it is not denied that good work was done since 1856. Consequently, it was at so comparatively recent a date that most of Faraday's work was done that some of the world's distinguished electricians yet live who began their studies during the latter years of Faraday's life. The difficulties of tracing, at least to some extent, the influence that Faraday's masterly investigations have had on the present condition of the electrical arts and sciences will, therefore, be considerably lessened.