The secondary were formed from the remains of the other two, and contain more mechanical deposits than any other.
This sketch of what I understand to be Werner's opinion concerning the different formation of the strata, is chiefly taken from a view of his system, in the Journal de Physique for 1800.
155. The main objection to the distinction here made between the primary and the intermediate strata, is founded on the facts that have been just stated. The sandstone of St Gothard is from a country having every character of a primary one in the highest perfection. The instances I have mentioned from the Highlands of Scotland, are from mountains, less elevated indeed than the Alps, but where the rock is micaceous, talcose, or siliceous, in planes erect to the horizon, and intersected by veins' of quartz. The shells from Plymouth are from a rock, that Werner would, I think, admit to be truly primitive. Those from the lakes, also, are from the centre of a country, occupied by porphyry, schorl, hornstone-schistus, and many others, about the order of which there can be no dispute. It is true, that in this tract there are argillaceous strata, of the kind that might be accounted intermediate, were they not interposed among those that are certainly primary; and this very intermixture shows, how little foundation there is for the distinction attempted to be made between the formation of the one and of the other. If there is any principle in mineralogy, which may be considered as perfectly ascertained, it is, that rocks similarly stratified, and alternated with one another, are of the same formation.
Hence we conclude, that there is no order of strata yet known, that does not contain proofs of the existence of more ancient strata. We see nothing, in the strict sense, primitive. It must be understood, that what is here said has no reference to granite, which I do not consider as a stratified rock, and in which neither the remains of organized bodies, nor sand, have I believe been ever found; though some instances will be hereafter mentioned, where granite contains fragments of other stone, viz. of different kinds of primary schistus.
To the instances of sand involved in primary schistus, I might have added many from the rocks of that order on the coast of Berwickshire, of which mention is so often made in these Illustrations; but I wished to draw the evidence from those rocks that are most unequivocally primary, and to which the Wernerian distinction of intermediate could not possibly be applied.
If any one assert, as M. De Luc has done, that sand is a chemical deposit, a certain mode of crystallization which quartz sometimes assumes, let him draw the line which separates sand from gravel; and let him explain why quartz, in the form of sand, is not found in mineral veins, in granite, nor in basaltes, that is, in none of the situations where the appearances of crystallization are most general and best ascertained.
Note v. § 10.
Transportation of the materials of the strata.
156. The great transportation or travelling of the materials of the strata, supposed by Dr Hutton, has been treated as absurd by some of his opponents, particularly De Luc and Kirwan. These philosophers seem not to have observed, that their own system, and indeed every system which derives the secondary strata from the primary, involves a transportation of materials, hardly less than is supposed in the Huttonian theory, and a degradation of the primeval mountains, in many instances much greater. To form some notion of this degradation, it must be recollected, that the primeval mountains, which furnished the materials of the secondary strata in the plains, cannot have stood in the place now occupied by these plains. This is obvious; and therefore we must necessarily regard the secondary strata as derived from the primitive mountains which are the nearest to them, and of which a part still remains. This part is sufficient to define the base of the original mountains; and the quantity of the secondary strata which surround them may help us to make some estimate of their height. Let us take, for instance, the extensive tract of secondary country about Newcastle, where coal mines have been sunk through a succession of secondary strata, to the depth of more than a thousand feet. This secondary country may be considered as comprehending almost the whole of the counties of Northumberland and Durham, and probably as extending very far under the part of the German Ocean which washes their coasts; and the whole strata composing it must be derived, on the hypothesis we are now considering, from the Cheviot Hills, on one side, and from those in the high parts of Westmoreland and Cumberland on the other, comprehending the Alston-Moor Hills, and the large group of primary mountains, so well known from the sublime and romantic scenery of the Lakes. Now, the mountains which stood on this base, had not only to supply the materials for the tract already mentioned, on the east, but had also their contingent to furnish to the plains on the west and north; the Cheviots to Roxburghshire and Berwickshire; the Northumberland mountains to the coal strata about Whitehaven, and along the sea coast to Lancashire. On the whole, we shall not exceed the truth, if we suppose, that the secondary strata, at the feet of the above mountains, are six or seven times more extensive than the base of the mountainous tract. If then we take the medium depth of these secondary strata to be one thousand feet, it is evident, that the mass of stone which composes them, if it were placed on the same base with the primitive mountains, would reach to the height of six thousand feet. This is supposing the mass to preserve the breadth of its base uniformly to the summit; but if it be supposed to taper, as mountains usually do, we must multiply this six thousand by three, in order to have the height of these primeval mountains, which, therefore, were originally elevated not less than eighteen thousand feet; in height, therefore, they once rivalled the Cordilleras, and are now but poorly represented by the hills of Skidaw and Helvellyn. It were easy to show, that this estimate is still below the result that strictly follows from the Neptunian hypothesis; but it is unnecessary to proceed further, than to prove, that the principle of the degradation of mountains, is involved in that hypothesis to an excessive and improbable degree; and that the supporters of it, have either been guilty of the inconsistency of refusing to Dr Hutton the moderate use of a principle, which they themselves employ in its utmost extent, or of not having sufficiently adverted to the consequences of their own system.
157. The formation of secondary strata from the degradation of the contiguous mountains, on close examination, is subject to many other difficulties of the same kind. Mountains of secondary strata, and nearly horizontal, are found in this island of the height of three thousand feet. Such are Ingleborough, Wharnside, and perhaps some others on the west of Yorkshire. The whole chain, indeed, for secondary mountains, is of great elevation. The strata are of limestone, and of a very coarse-grained sandstone, alternating with it. No mountains can more clearly point out, that the strata of which they consist were once continued quite across the vallies which now separate them; and hence, if the materials of those strata were indeed furnished from any contiguous primitive mountains, the latter must have been, out of all proportion, higher than any mountains now in Britain.