1. Metallic Veins.
Veins defined. They contain substances that were once in fusion, § 49, 50. Metallic veins, native metals, &c. § 51. Native copper, § 52. Manganese, § 53. Fragments of rocks included in veins, § 55. Shifting and heaving of veins, § 56, 57. Veins of different dates, § 58. Stratification not found in veins. Coating of the sides, what, § 59. Metallic veins most common in primitive strata; but not confined to them, § 60.
2. Whinstone.
Enumeration of stones of this genus, § 61. Whin, whether in veins or in masses, resembles lava, § 62. Is a subterraneous lava, § 63. Columnar structure an argument for fusion, § 64. Not produced by drying, § 65. Whinstone penetrated by pyrites, § 66. Induration of the strata in contact with whin, § 67 Coal charred by whinstone veins, § 68. Disturbance of the strata by whinstone veins, § 69. Phenomena of whin interposed between strata, § 70, 71. Transition from whin to strata not gradual. § 72. Agates and chalcedonies in whinstone, § 74. This stone melted and reproduced from fusion by Sir James Hall, § 75. Mineral alkali found in it by Dr Kennedy, ib. Whinstones of different formation, § 76. Porphyry a species or variety of whinstone, §77.
3. Granite.
Granite defined. Exists in masses and veins, § 77. The basis of other rocks, § 78. Its original fluidity inferred from the crystallization of its parts, § 79. Its fusion, from the structure of the Portsoy granite, § 80, 81.—from granite veins, § 82. General conclusion as to the igneous origin of minerals, § 83, 84, 85. Actual existence of subterraneous heat known from hot springs, volcanoes, earthquakes, § 86. Volcanic fire seated deep under the surface, § 87. Subterraneous heat not accompanied by burning, § 88, 89. Transmission of subterraneous heat, so as to produce hot springs, &c. § 90, 91.
SECTION III