B. Not only does every good curve vary in general tendency, but it is modulated, as it proceeds, by myriads of subordinate curves. Thus the outlines of a tree trunk are never as at a, Fig. 40, but as at b. So also in waves, clouds, and all other nobly formed masses. Thus another essential difference between good and bad drawing, or good and bad sculpture, depends on the quantity and refinement of minor curvatures carried, by good work, into the great lines. Strictly speaking, however, this is not variation in large curves, but composition of large curves out of small ones; it is an increase in the quantity of the beautiful element, but not a change in its nature.

5. THE LAW OF RADIATION.

Fig. 40.

We have hitherto been concerned only with the binding of our various objects into beautiful lines or processions. The next point we have to consider is, how we may unite these lines or processions themselves, so as to make groups of them.

Now, there are two kinds of harmonies of lines. One in which, moving more or less side by side, they variously, but evidently with consent, retire from or approach each other, intersect or oppose each other: currents of melody in music, for different voices, thus approach and cross, fall and rise, in harmony; so the waves of the sea, as they approach the shore, flow into one another or cross, but with a great unity through all; and so various lines of composition often flow harmoniously through and across each other in a picture. But the most simple and perfect connexion of lines is by radiation; that is, by their all springing from one point, or closing towards it: and this harmony is often, in Nature almost always, united with the other; as the boughs of trees, though they intersect and play amongst each other irregularly, indicate by their general tendency their origin from one root. An essential part of the beauty of all vegetable form is in this radiation: it is seen most simply in a single flower or leaf, as in a convolvulus bell, or chestnut leaf; but more beautifully in the complicated arrangements of the large boughs and sprays. For a leaf is only a flat piece of radiation; but the tree throws its branches on all sides, and even in every profile view of it, which presents a radiation more or less correspondent to that of its leaves, it is more beautiful, because varied by the freedom of the separate branches. I believe it has been ascertained that, in all trees, the angle at which, in their leaves, the lateral ribs are set on their central rib is approximately the same at which the branches leave the great stem; and thus each section of the tree would present a kind of magnified view of its own leaf, were it not for the interfering force of gravity on the masses of foliage. This force in proportion to their age, and the lateral leverage upon them, bears them downwards at the extremities, so that, as before noticed, the lower the bough grows on the stem, the more it droops (Fig. 17, p. 295.); besides this, nearly all beautiful trees have a tendency to divide into two or more principal masses, which give a prettier and more complicated symmetry than if one stem ran all the way up the centre. Fig. 41. may thus be considered the simplest type of tree radiation, as opposed to leaf radiation. In this figure, however, all secondary ramification is unrepresented, for the sake of simplicity; but if we take one half of such a tree, and merely give two secondary branches to each main branch (as represented in the general branch structure shown at b, Fig. 18., p. 296), we shall have the form, Fig. 42. This I consider the perfect general type of tree structure; and it is curiously connected with certain forms of Greek, Byzantine, and Gothic ornamentation, into the discussion of which, however, we must not enter here. It will be observed, that both in Figs. 41. and 42. all the branches so spring from the main stem as very nearly to suggest their united radiation from the root R. This is by no means universally the case; but if the branches do not bend towards a point in the root, they at least converge to some point or other. In the examples in Fig. 43., the mathematical centre of curvature, a, is thus, in one case, on the ground at some distance from the root, and in the other, near the top of the tree. Half, only, of each tree is given, for the sake of clearness: Fig. 44. gives both sides of another example, in which the origins of curvature are below the root. As the positions of such points may be varied without end, and as the arrangement of the lines is also farther complicated by the fact of the boughs springing for the most part in a spiral order round the tree, and at proportionate distances, the systems of curvature which regulate the form of vegetation are quite infinite. Infinite is a word easily said, and easily written, and people do not always mean it when they say it; in this case I do mean it; the number of systems is incalculable, and even to furnish any thing like a representative number of types, I should have to give several hundreds of figures such as Fig. 44.[251]

Fig. 41.

Fig. 42.