If the same casual coincidence never occurred a second time, we should have an easy test for distinguishing such from the coincidences which are the results of a law. As long as the phenomena had been found together only once, so long, unless we knew some more general laws from which the coincidence might have resulted, we could not distinguish it from a casual one; but if it occurred twice, we should know that the phenomena so conjoined must be in some way connected through their causes.

There is, however, no such test. A coincidence may occur again and again, and yet be only casual. Nay, it would be inconsistent with what we know of the order of nature, to doubt that every casual coincidence will sooner or later be repeated, as long as the phenomena between which it occurred do not cease to exist, or to be reproduced. The recurrence, therefore, of the same coincidence more than once, or even its frequent recurrence, does not prove that it is an instance of any law; does not prove that it is not casual, or, in common language, the effect of chance.

And yet, when a coincidence cannot be deduced from known laws, nor proved by experiment to be itself a case of causation, the frequency of its occurrence is the only evidence from which we can infer that it is the result of a law. Not, however, its absolute frequency. The question is not whether the coincidence occurs often or seldom, in the ordinary sense of those terms; but whether it occurs more often than chance will account for; more often than might rationally be expected if the coincidence were casual. We have to decide, therefore, what degree of frequency in a coincidence, chance will account for. And to this there can be no general answer. We can only state the principle by which the answer must be determined: the answer itself will be different in every different case.

Suppose that one of the phenomena, A, exists always, and the other phenomenon, B, only occasionally: it follows that every instance of B will be an instance of its coincidence with A, and yet the coincidence will be merely casual, not the result of any connexion between them. The fixed stars have been constantly in existence since the beginning of human experience, and all phenomena that have come under human observation have, in every single instance, coexisted with them; yet this coincidence, though equally invariable with that which exists between any of those phenomena and its own cause, does not prove that the stars are its cause, nor that they are in anywise connected with it. As strong a case of coincidence, therefore, as can possibly exist, and a much stronger one in point of mere frequency than most of those which prove laws, does not here prove a law: why? because, since the stars exist always, they must coexist with every other phenomenon, whether connected with them by causation or not. The uniformity, great though it be, is no greater than would occur on the supposition that no such connexion exists.

On the other hand, suppose that we were inquiring whether there be any connexion between rain and any particular wind. Rain, we know, occasionally occurs with every wind; therefore the connexion, if it exists, cannot be an actual law; but still, rain may be connected with some particular wind through causation; that is, though they cannot be always effects of the same cause (for if so they would regularly coexist), there may be some causes common to the two, so that in so far as either is produced by those common causes, they will, from the laws of the causes, be found to coexist. How, then, shall we ascertain this? The obvious answer is, by observing whether rain occurs with one wind more frequently than with any other. That, however, is not enough; for perhaps that one wind blows more frequently than any other; so that its blowing more frequently in rainy weather is no more than would happen, although it had no connexion with the causes of rain, provided it were not connected with causes adverse to rain. In England, westerly winds blow during about twice as great a portion of the year as easterly. If, therefore, it rains only twice as often with a westerly, as with an easterly wind, we have no reason to infer that any law of nature is concerned in the coincidence. If it rains more than twice as often, we may be sure that some law is concerned; either there is some cause in nature which, in this climate, tends to produce both rain and a westerly wind, or a westerly wind has itself some tendency to produce rain. But if it rains less than twice as often, we may draw a directly opposite inference: the one, instead of being a cause, or connected with causes, of the other, must be connected with causes adverse to it, or with the absence of some cause which produces it; and though it may still rain much oftener with a westerly wind than with an easterly, so far would this be from proving any connexion between the phenomena, that the connexion proved would be between rain and an easterly wind, to which, in mere frequency of coincidence, it is less allied.

Here, then, are two examples: in one, the greatest possible frequency of coincidence, with no instance whatever to the contrary, does not prove that there is any law; in the other, a much less frequency of coincidence, even when non-coincidence is still more frequent, does prove that there is a law. In both cases the principle is the same. In both we consider the positive frequency of the phenomena themselves, and how great frequency of coincidence that must of itself bring about, without supposing any connexion between them, provided there be no repugnance; provided neither be connected with any cause tending to frustrate the other. If we find a greater frequency of coincidence than this, we conclude that there is some connexion; if a less frequency, that there is some repugnance. In the former case, we conclude that one of the phenomena can under some circumstances cause the other, or that there exists something capable of causing them both; in the latter, that one of them, or some cause which produces one of them, is capable of counteracting the production of the other. We have thus to deduct from the observed frequency of coincidence, as much as may be the effect of chance, that is, of the mere frequency of the phenomena themselves; and if anything remains, what does remain is the residual fact which proves the existence of a law.

The frequency of the phenomena can only be ascertained within definite limits of space and time; depending as it does on the quantity and distribution of the primeval natural agents, of which we can know nothing beyond the boundaries of human observation, since no law, no regularity, can be traced in it, enabling us to infer the unknown from the known. But for the present purpose this is no disadvantage, the question being confined within the same limits as the data. The coincidences occurred in certain places and times, and within those we can estimate the frequency with which such coincidences would be produced by chance. If, then, we find from observation that A exists in one case out of every two, and B in one case out of every three; then if there be neither connexion nor repugnance between them, or between any of their causes, the instances in which A and B will both exist, that is to say will coexist, will be one case in every six. For A exists in three cases out of six: and B, existing in one case out of every three without regard to the presence or absence of A, will exist in one case out of those three. There will therefore be, of the whole number of cases, two in which A exists without B; one case of B without A; two in which neither B nor A exists, and one case out of six in which they both exist. If then, in point of fact, they are found to coexist oftener than in one case out of six; and, consequently, A does not exist without B so often as twice in three times, nor B without A so often as once in every twice; there is some cause in existence which tends to produce a conjunction between A and B.

Generalizing the result, we may say, that if A occurs in a larger proportion of the cases where B is, than of the cases where B is not; then will B also occur in a larger proportion of the cases where A is, than of the cases where A is not; and there is some connexion, through causation, between A and B. If we could ascend to the causes of the two phenomena, we should find, at some stage, either proximate or remote, some cause or causes common to both; and if we could ascertain what these are, we could frame a generalization which would be true without restriction of place or time: but until we can do so, the fact of a connexion between the two phenomena remains an empirical law.

[§ 3.] Having considered in what manner it may be determined whether any given conjunction of phenomena is casual, or the result of some law; to complete the theory of chance, it is necessary that we should now consider those effects which are partly the result of chance and partly of law, or, in other words, in which the effects of casual conjunctions of causes are habitually blended in one result with the effects of a constant cause.

This is a case of Composition of Causes; and the peculiarity of it is, that instead of two or more causes intermixing their effects in a regular manner with those of one another, we have now one constant cause, producing an effect which is successively modified by a series of variable causes. Thus, as summer advances, the approach of the sun to a vertical position tends to produce a constant increase of temperature; but with this effect of a constant cause, there are blended the effects of many variable causes, winds, clouds, evaporation, electric agencies and the like, so that the temperature of any given day depends in part on these fleeting causes, and only in part on the constant cause. If the effect of the constant cause is always accompanied and disguised by effects of variable causes, it is impossible to ascertain the law of the constant cause in the ordinary manner, by separating it from all other causes and observing it apart. Hence arises the necessity of an additional rule of experimental inquiry.