Many events are altogether improbable to us, before they have happened, or before we are informed of their happening, which are not in the least incredible when we are informed of them, because not contrary to any, even approximate, induction. In the cast of a perfectly fair die, the chances are five to one against throwing ace, that is, ace will be thrown on an average only once in six throws. But this is no reason against believing that ace was thrown on a given occasion, if any credible witness asserts it; since though ace is only thrown once in six times, some number which is only thrown once in six times must have been thrown if the die was thrown at all. The improbability, then, or in other words, the unusualness, of any fact, is no reason for disbelieving it, if the nature of the case renders it certain that either that or something equally improbable, that is, equally unusual, did happen. Nor is this all: for even if the other five sides of the die were all twos, or all threes, yet as ace would still on the average come up once in every six throws, its coming up in a given throw would be not in any way contradictory to experience. If we disbelieved all facts which had the chances against them beforehand, we should believe hardly anything. We are told that A. B. died yesterday: the moment before we were so told, the chances against his having died on that day may have been ten thousand to one; but since he was certain to die at some time or other, and when he died must necessarily die on some particular day, while the preponderance of chances is very great against every day in particular, experience affords no ground for discrediting any testimony which may be produced to the event's having taken place on a given day.

Yet it has been considered, by Dr. Campbell and others, as a complete answer to Hume's doctrine (that things are incredible which are contrary to the uniform course of experience), that we do not disbelieve, merely because the chances were against them, things in strict conformity to the uniform course of experience; that we do not disbelieve an alleged fact merely because the combination of causes on which it depends occurs only once in a certain number of times. It is evident that whatever is shown by observation, or can be proved from laws of nature, to occur in a certain proportion (however small) of the whole number of possible cases, is not contrary to experience; though we are right in disbelieving it, if some other supposition respecting the matter in question involves on the whole a less departure from the ordinary course of events. Yet, on such grounds as this have able writers been led to the extraordinary conclusion, that nothing supported by credible testimony ought ever to be disbelieved.

[§ 5.] We have considered two species of events, commonly said to be improbable; one kind which are in no way extraordinary, but which, having an immense preponderance of chances against them, are improbable until they are affirmed, but no longer; another kind which, being contrary to some recognised law of nature, are incredible on any amount of testimony except such as would be sufficient to shake our belief in the law itself. But between these two classes of events, there is an intermediate class, consisting of what are commonly termed Coincidences: in other words, those combinations of chances which present some peculiar and unexpected regularity, assimilating them, in so far, to the results of law. As if, for example, in a lottery of a thousand tickets, the numbers should be drawn in the exact order of what are called the natural numbers, 1, 2, 3, &c. We have still to consider the principles of evidence applicable to this case: whether there is any difference between coincidences and ordinary events, in the amount of testimony or other evidence necessary to render them credible.

It is certain, that on every rational principle of expectation, a combination of this peculiar sort may be expected quite as often as any other given series of a thousand numbers; that with perfectly fair dice, sixes will be thrown twice, thrice, or any number of times in succession, quite as often in a thousand or a million throws, as any other succession of numbers fixed upon beforehand; and that no judicious player would give greater odds against the one series than against the other. Notwithstanding this, there is a general disposition to regard the one as much more improbable than the other, and as requiring much stronger evidence to make it credible. Such is the force of this impression, that it has led some thinkers to the conclusion, that nature has greater difficulty in producing regular combinations than irregular ones; or in other words, that there is some general tendency of things, some law, which prevents regular combinations from occurring, or at least from occurring so often as others. Among these thinkers may be numbered D'Alembert; who, in an Essay on Probabilities to be found in the fifth volume of his Mélanges, contends that regular combinations, though equally probable according to the mathematical theory with any others, are physically less probable. He appeals to common sense, or in other words, to common impressions; saying, if dice thrown repeatedly in our presence gave sixes every time, should we not, before the number of throws had reached ten, (not to speak of thousands of millions,) be ready to affirm, with the most positive conviction, that the dice were false?

The common and natural impression is in favour of D'Alembert: the regular series would be thought much more unlikely than an irregular. But this common impression is, I apprehend, merely grounded on the fact, that scarcely anybody remembers to have ever seen one of these peculiar coincidences: the reason of which is simply that no one's experience extends to anything like the number of trials, within which that or any other given combination of events can be expected to happen. The chance of sixes on a single throw of two dice being 1/36, the chance of sixes ten times in succession is 1 divided by the tenth power of 36; in other words, such a concurrence is only likely to happen once in 3,656,158,440,062,976 trials, a number which no dice-player's experience comes up to a millionth part of. But if, instead of sixes ten times, any other given succession of ten throws had been fixed upon, it would have been exactly as unlikely that in any individual's experience that particular succession had ever occurred; although this does not seem equally improbable, because no one could possibly have remembered whether it had occurred or not, and because the comparison is tacitly made, not between sixes ten times and any one particular series of throws, but between all regular and all irregular successions taken together.

That (as D'Alembert says) if the succession of sixes was actually thrown before our eyes, we should ascribe it not to chance, but to unfairness in the dice, is unquestionably true. But this arises from a totally different principle. We should then be considering, not the probability of the fact in itself, but the comparative probability with which, when it is known to have happened, it may be referred to one or to another cause. The regular series is not at all less likely than the irregular one to be brought about by chance, but it is much more likely than the irregular one to be produced by design; or by some general cause operating through the structure of the dice. It is the nature of casual combinations to produce a repetition of the same event, as often and no oftener than any other series of events. But it is the nature of general causes to reproduce, in the same circumstances, always the same event. Common sense and science alike dictate that, all other things being the same, we should rather attribute the effect to a cause which if real would be very likely to produce it, than to a cause which would be very unlikely to produce it. According to Laplace's sixth theorem, which we demonstrated in a former chapter, the difference of probability arising from the superior efficacy of the constant cause, unfairness in the dice, would after a very few throws far outweigh any antecedent probability which there could be against its existence.

D'Alembert should have put the question in another manner. He should have supposed that we had ourselves previously tried the dice, and knew by ample experience that they were fair. Another person then tries them in our absence, and assures us that he threw sixes ten times in succession. Is the assertion credible or not? Here the effect to be accounted for is not the occurrence itself, but the fact of the witness's asserting it. This may arise either from its having really happened, or from some other cause. What we have to estimate is the comparative probability of these two suppositions.

If the witness affirmed that he had thrown any other series of numbers, supposing him to be a person of veracity, and tolerable accuracy, and to profess that he took particular notice, we should believe him. But the ten sixes are exactly as likely to have been really thrown as the other series. If, therefore, this assertion is less credible than the other, the reason must be, not that it is less likely than the other to be made truly, but that it is more likely than the other to be made falsely.

One reason obviously presents itself why what is called a coincidence, should be oftener asserted falsely than an ordinary combination. It excites wonder. It gratifies the love of the marvellous. The motives, therefore, to falsehood, one of the most frequent of which is the desire to astonish, operate more strongly in favour of this kind of assertion than of the other kind. Thus far there is evidently more reason for discrediting an alleged coincidence, than a statement in itself not more probable, but which if made would not be thought remarkable. There are cases, however, in which the presumption on this ground would be the other way. There are some witnesses who, the more extraordinary an occurrence might appear, would be the more anxious to verify it by the utmost carefulness of observation before they would venture to believe it, and still more before they would assert it to others.

[§ 6.] Independently, however, of any peculiar chances of mendacity arising from the nature of the assertion, Laplace contends, that merely on the general ground of the fallibility of testimony, a coincidence is not credible on the same amount of testimony on which we should be warranted in believing an ordinary combination of events. In order to do justice to his argument, it is necessary to illustrate it by the example chosen by himself.