An empirical law, then, is an observed uniformity, presumed to be resolvable into simpler laws, but not yet resolved into them. The ascertainment of the empirical laws of phenomena often precedes by a long interval the explanation of those laws by the Deductive Method; and the verification of a deduction usually consists in the comparison of its results with empirical laws previously ascertained.

[§ 2.] From a limited number of ultimate laws of causation, there are necessarily generated a vast number of derivative uniformities, both of succession and of coexistence. Some are laws of succession or of coexistence between different effects of the same cause: of these we had examples in the last chapter. Some are laws of succession between effects and their remote causes; resolvable into the laws which connect each with the intermediate link. Thirdly, when causes act together and compound their effects, the laws of those causes generate the fundamental law of the effect, namely, that it depends on the coexistence of those causes. And, finally, the order of succession or of coexistence which obtains among effects, necessarily depends on their causes. If they are effects of the same cause, it depends on the laws of that cause; if on different causes, it depends on the laws of those causes severally, and on the circumstances which determine their coexistence. If we inquire further when and how the causes will coexist, that, again, depends on their causes: and we may thus trace back the phenomena higher and higher, until the different series of effects meet in a point, and the whole is shown to have depended ultimately on some common cause; or until, instead of converging to one point, they terminate in different points, and the order of the effects is proved to have arisen from the collocation of some of the primeval causes, or natural agents. For example, the order of succession and of coexistence among the heavenly motions, which is expressed by Kepler's laws, is derived from the coexistence of two primeval causes, the sun, and the original impulse or projectile force belonging to each planet.[13] Kepler's laws are resolved into the laws of these causes and the fact of their coexistence.

Derivative laws, therefore, do not depend solely on the ultimate laws into which they are resolvable: they mostly depend on those ultimate laws, and an ultimate fact; namely, the mode of coexistence of some of the component elements of the universe. The ultimate laws of causation might be the same as at present, and yet the derivative laws completely different, if the causes coexisted in different proportions, or with any difference in those of their relations by which the effects are influenced. If, for example, the sun's attraction, and the original projectile force, had existed in some other ratio to one another than they did (and we know of no reason why this should not have been the case), the derivative laws of the heavenly motions might have been quite different from what they are. The proportions which exist happen to be such as to produce regular elliptical motions; any other proportions would have produced different ellipses, or circular, or parabolic, or hyperbolic motions, but still regular ones; because the effects of each of the agents accumulate according to an uniform law; and two regular series of quantities, when their corresponding terms are added, must produce a regular series of some sort, whatever the quantities themselves are.

[§ 3.] Now this last-mentioned element in the resolution of a derivative law, the element which is not a law of causation, but a collocation of causes, cannot itself be reduced to any law. There is (as formerly remarked[14]) no uniformity, no norma, principle, or rule, perceivable in the distribution of the primeval natural agents through the universe. The different substances composing the earth, the powers that pervade the universe, stand in no constant relation to one another. One substance is more abundant than others, one power acts through a larger extent of space than others, without any pervading analogy that we can discover. We not only do not know of any reason why the sun's attraction and the force in the direction of the tangent coexist in the exact proportion they do, but we can trace no coincidence between it and the proportions in which any other elementary powers in the universe are intermingled. The utmost disorder is apparent in the combination of the causes; which is consistent with the most regular order in their effects; for when each agent carries on its own operations according to an uniform law, even the most capricious combination of agencies will generate a regularity of some sort; as we see in the kaleidoscope, where any casual arrangement of coloured bits of glass produces by the laws of reflection a beautiful regularity in the effect.

[§ 4.] In the above considerations lies the justification of the limited degree of reliance which scientific inquirers are accustomed to place in empirical laws.

A derivative law which results wholly from the operation of some one cause, will be as universally true as the laws of the cause itself; that is, it will always be true except where some one of those effects of the cause, on which the derivative law depends, is defeated by a counteracting cause. But when the derivative law results not from different effects of one cause, but from effects of several causes, we cannot be certain that it will be true under any variation in the mode of coexistence of those causes, or of the primitive natural agents on which the causes ultimately depend. The proposition that coal beds rest on certain descriptions of strata exclusively, though true on the earth so far as our observation has reached, cannot be extended to the moon or the other planets, supposing coal to exist there; because we cannot be assured that the original constitution of any other planet was such as to produce the different depositions in the same order as in our globe. The derivative law in this case depends not solely on laws, but on a collocation; and collocations cannot be reduced to any law.

Now it is the very nature of a derivative law which has not yet been resolved into its elements, in other words, an empirical law, that we do not know whether it results from the different effects of one cause, or from effects of different causes. We cannot tell whether it depends wholly on laws, or partly on laws and partly on a collocation. If it depends on a collocation, it will be true in all the cases in which that particular collocation exists. But, since we are entirely ignorant, in case of its depending on a collocation, what the collocation is, we are not safe in extending the law beyond the limits of time and place in which we have actual experience of its truth. Since within those limits the law has always been found true, we have evidence that the collocations, whatever they are, on which it depends, do really exist within those limits. But, knowing of no rule or principle to which the collocations themselves conform, we cannot conclude that because a collocation is proved to exist within certain limits of place or time, it will exist beyond those limits. Empirical laws, therefore, can only be received as true within the limits of time and place in which they have been found true by observation: and not merely the limits of time and place, but of time, place, and circumstance: for since it is the very meaning of an empirical law that we do not know the ultimate laws of causation on which it is dependent, we cannot foresee, without actual trial, in what manner or to what extent the introduction of any new circumstance may affect it.

[§ 5.] But how are we to know that an uniformity, ascertained by experience, is only an empirical law? Since, by the supposition, we have not been able to resolve it into any other laws, how do we know that it is not an ultimate law of causation?