Dr. Whewell also says, that it does not appear why this resemblance of ideas to the sensations of which they are copies, should be spoken of as if it were a peculiarity of one class of ideas, those of space. My reply is, that I do not so speak of it. The peculiarity I contend for is only one of degree. All our ideas of sensation of course resemble the corresponding sensations, but they do so with very different degrees of exactness and of reliability. No one, I presume, can recall in imagination a colour or an odour with the same distinctness and accuracy with which almost every one can mentally reproduce an image of a straight line or a triangle. To the extent, however, of their capabilities of accuracy, our recollections of colours or of odours may serve as subjects of experimentation, as well as those of lines and spaces, and may yield conclusions which will be true of their external prototypes. A person in whom, either from natural gift or from cultivation, the impressions of colour were peculiarly vivid and distinct, if asked which of two blue flowers was of the darkest tinge, though he might never have compared the two, or even looked at them together, might be able to give a confident answer on the faith of his distinct recollection of the colours; that is, he might examine his mental pictures, and find there a property of the outward objects. But in hardly any case except that of simple geometrical forms, could this be done by mankind generally, with a degree of assurance equal to that which is given by a contemplation of the objects themselves. Persons differ most widely in the precision of their recollection, even of forms: one person, when he has looked any one in the face for half a minute, can draw an accurate likeness of him from memory; another may have seen him every day for six months, and hardly know whether his nose is long or short. But everybody has a perfectly distinct mental image of a straight line, a circle, or a rectangle. And every one concludes confidently from these mental images to the corresponding outward things.
The Quarterly Review for June 1841, contains an article of great ability on Dr. Whewell's two great works, the writer of which maintains, on the subject of axioms, the doctrine advanced in the text, that they are generalizations from experience, and supports that opinion by a line of argument strikingly coinciding with mine. When I state that the whole of the present chapter was written before I had seen the article, (the greater part, indeed, before it was published,) it is not my object to occupy the reader's attention with a matter so unimportant as the degree of originality which may or may not belong to any portion of my own speculations, but to obtain for an opinion which is opposed to reigning doctrines, the recommendation derived from a striking concurrence of sentiment between two inquirers entirely independent of one another. I embrace the opportunity of citing from a writer of the extensive acquirements in physical and metaphysical knowledge and the capacity of systematic thought which the article evinces, passages so remarkably in unison with my own views as the following:—
“The truths of geometry are summed up and embodied in its definitions and axioms.... Let us turn to the axioms, and what do we find? A string of propositions concerning magnitude in the abstract, which are equally true of space, time, force, number, and every other magnitude susceptible of aggregation and subdivision. Such propositions, where they are not mere definitions, as some of them are, carry their inductive origin on the face of their enunciation.... Those which declare that two straight lines cannot inclose a space, and that two straight lines which cut one another cannot both be parallel to a third, are in reality the only ones which express characteristic properties of space, and these it will be worth while to consider more nearly. Now the only clear notion we can form of straightness is uniformity of direction, for space in its ultimate analysis is nothing but an assemblage of distances and directions. And (not to dwell on the notion of continued contemplation, i.e., mental experience, as included in the very idea of uniformity; nor on that of transfer of the contemplating being from point to point, and of experience, during such transfer, of the homogeneity of the interval passed over) we cannot even propose the proposition in an intelligible form, to any one whose experience ever since he was born has not assured him of the fact. The unity of direction, or that we cannot march from a given point by more than one path direct to the same object, is matter of practical experience long before it can by possibility become matter of abstract thought. We cannot attempt mentally to exemplify the conditions of the assertion in an imaginary case opposed to it, without violating our habitual recollection of this experience, and defacing our mental picture of space as grounded on it. What but experience, we may ask, can possibly assure us of the homogeneity of the parts of distance, time, force, and measurable aggregates in general, on which the truth of the other axioms depends? As regards the latter axiom, after what has been said it must be clear that the very same course of remarks equally applies to its case, and that its truth is quite as much forced on the mind as that of the former by daily and hourly experience ... including always, be it observed, in our notion of experience, that which is gained by contemplation of the inward picture which the mind forms to itself in any proposed case, or which it arbitrarily selects as an example—such picture, in virtue of the extreme simplicity of these primary relations, being called up by the imagination with as much vividness and clearness as could be done by any external impression, which is the only meaning we can attach to the word intuition, as applied to such relations.”
And again, of the axioms of mechanics:—“As we admit no such propositions, other than as truths inductively collected from observation, even in geometry itself, it can hardly be expected that, in a science of obviously contingent relations, we should acquiesce in a contrary view. Let us take one of these axioms and examine its evidence: for instance, that equal forces perpendicularly applied at the opposite ends of equal arms of a straight lever will balance each other. What but experience, we may ask, in the first place, can possibly inform us that a force so applied will have any tendency to turn the lever on its centre at all? or that force can be so transmitted along a rigid line perpendicular to its direction, as to act elsewhere in space than along its own line of action? Surely this is so far from being self-evident that it has even a paradoxical appearance, which is only to be removed by giving our lever thickness, material composition, and molecular powers. Again we conclude, that the two forces, being equal and applied under precisely similar circumstances, must, if they exert any effort at all to turn the lever, exert equal and opposite efforts: but what à priori reasoning can possibly assure us that they do act under precisely similar circumstances? that points which differ in place are similarly circumstanced as regards the exertion of force? that universal space may not have relations to universal force—or, at all events, that the organization of the material universe may not be such as to place that portion of space occupied by it in such relations to the forces exerted in it, as may invalidate the absolute similarity of circumstances assumed? Or we may argue, what have we to do with the notion of angular movement in the lever at all? The case is one of rest, and of quiescent destruction of force by force. Now how is this destruction effected? Assuredly by the counter-pressure which supports the fulcrum. But would not this destruction equally arise, and by the same amount of counteracting force, if each force simply pressed its own half of the lever against the fulcrum? And what can assure us that it is not so, except removal of one or other force, and consequent tilting of the lever? The other fundamental axiom of statics, that the pressure on the point of support is the sum of the weights ... is merely a scientific transformation and more refined mode of stating a coarse and obvious result of universal experience, viz. that the weight of a rigid body is the same, handle it or suspend it in what position or by what point we will, and that whatever sustains it sustains its total weight. Assuredly, as Mr. Whewell justly remarks, ‘No one probably ever made a trial for the purpose of showing that the pressure on the support is equal to the sum of the weights’ ... But it is precisely because in every action of his life from earliest infancy he has been continually making the trial, and seeing it made by every other living being about him, that he never dreams of staking its result on one additional attempt made with scientific accuracy. This would be as if a man should resolve to decide by experiment whether his eyes were useful for the purpose of seeing, by hermetically sealing himself up for half an hour in a metal case.”
On the “paradox of universal propositions obtained by experience,” the same writer says: “If there be necessary and universal truths expressible in propositions of axiomatic simplicity and obviousness, and having for their subject-matter the elements of all our experience and all our knowledge, surely these are the truths which, if experience suggest to us any truths at all, it ought to suggest most readily, clearly, and unceasingly. If it were a truth, universal and necessary, that a net is spread over the whole surface of every planetary globe, we should not travel far on our own without getting entangled in its meshes, and making the necessity of some means of extrication an axiom of locomotion.... There is, therefore, nothing paradoxical, but the reverse, in our being led by observation to a recognition of such truths, as general propositions, coextensive at least with all human experience. That they pervade all the objects of experience, must ensure their continual suggestion by experience; that they are true, must ensure that consistency of suggestion, that iteration of uncontradicted assertion, which commands implicit assent, and removes all occasion of exception; that they are simple, and admit of no misunderstanding, must secure their admission by every mind.”
“A truth, necessary and universal, relative to any object of our knowledge, must verify itself in every instance where that object is before our contemplation, and if at the same time it be simple and intelligible, its verification must be obvious. The sentiment of such a truth cannot, therefore, but be present to our minds whenever that object is contemplated, and must therefore make a part of the mental picture or idea of that object which we may on any occasion summon before our imagination.... All propositions, therefore, become not only untrue but inconceivable, if ... axioms be violated in their enunciation.”
Another high authority (if indeed it be another authority) may be cited in favour of the doctrine that axioms rest on the evidence of induction. “The axioms of geometry themselves may be regarded as in some sort an appeal to experience, not corporeal, but mental. When we say, the whole is greater than its part, we announce a general fact, which rests, it is true, on our ideas of whole and part; but, in abstracting these notions, we begin by considering them as subsisting in space, and time, and body, and again, in linear, and superficial, and solid space. Again, when we say, the equals of equals are equal, we mentally make comparisons, in equal spaces, equal times, &c., so that these axioms, however self-evident, are still general propositions so far of the inductive kind, that, independently of experience, they would not present themselves to the mind. The only difference between these and axioms obtained from extensive induction is this, that, in raising the axioms of geometry, the instances offer themselves spontaneously, and without the trouble of search, and are few and simple; in raising those of nature, they are infinitely numerous, complicated, and remote, so that the most diligent research and the utmost acuteness are required to unravel their web and place their meaning in evidence.”—Sir J. Herschel's Discourse on the Study of Natural Philosophy, pp. 95, 96.
Dr. Whewell thinks it improper to apply the term Induction to any operation not terminating in the establishment of a general truth. Induction, he says (in p. 15 of his pamphlet) “is not the same thing as experience and observation. Induction is experience or observation consciously looked at in a general form. This consciousness and generality are necessary parts of that knowledge which is science.” And he objects (p. 8) to the mode in which the word Induction is employed in this work, as an undue extension of that term “not only to the cases in which the general induction is consciously applied to a particular instance, but to the cases in which the particular instance is dealt with by means of experience in that rude sense in which experience can be asserted of brutes, and in which of course we can in no way imagine that the law is possessed or understood as a general proposition.” This use of the term he deems a “confusion of knowledge with practical tendencies.”
I disclaim, as strongly as Dr. Whewell can do, the application of such terms as induction, inference, or reasoning, to operations performed by mere instinct, that is, from an animal impulse, without the exertion of any intelligence. But I perceive no ground for confining the use of those terms to cases in which the inference is drawn in the forms and with the precautions required by scientific propriety. To the idea of Science, an express recognition and distinct apprehension of general laws as such, is essential: but nine-tenths of the conclusions drawn from experience in the course of practical life, are drawn without any such recognition: they are direct inferences from known cases, to a case supposed to be similar. I have endeavoured to shew that this is not only as legitimate an operation, but substantially the same operation, as that of ascending from known cases to a general proposition; (except that the latter process has one great security for correctness which the former does not possess). In Science, the inference must necessarily pass through the intermediate stage of a general proposition, because Science wants its conclusions for record, and not for instantaneous use. But the inferences drawn for the guidance of practical affairs, by persons who would often be quite incapable of expressing in unexceptionable terms the corresponding generalizations, may and frequently do exhibit intellectual powers quite equal to any which have ever been displayed in Science: and if these inferences are not inductive, what are they? The limitation imposed on the term by Dr. Whewell seems perfectly arbitrary; neither justified by any fundamental distinction between what he includes and what he desires to exclude, nor sanctioned by usage, at least from the time of Reid and Stewart, the principal legislators (as far as the English language is concerned) of modern metaphysical terminology.
Dr. Whewell, in his reply, contests the distinction here drawn, and maintains, that not only different descriptions, but different explanations of a phenomenon, may all be true. Of the three theories respecting the motions of the heavenly bodies, he says (p. 25): “Undoubtedly all these explanations may be true and consistent with each other, and would be so if each had been followed out so as to shew in what manner it could be made consistent with the facts. And this was, in reality, in a great measure done. The doctrine that the heavenly bodies were moved by vortices was successively modified, so that it came to coincide in its results with the doctrine of an inverse-quadratic centripetal force.... When this point was reached, the vortex was merely a machinery, well or ill devised, for producing such a centripetal force, and therefore did not contradict the doctrine of a centripetal force. Newton himself does not appear to have been averse to explaining gravity by impulse. So little is it true that if one theory be true the other must be false. The attempt to explain gravity by the impulse of streams of particles flowing through the universe in all directions, which I have mentioned in the Philosophy, is so far from being inconsistent with the Newtonian theory, that it is founded entirely upon it. And even with regard to the doctrine, that the heavenly bodies move by an inherent virtue; if this doctrine had been maintained in any such way that it was brought to agree with the facts, the inherent virtue must have had its laws determined; and then it would have been found that the virtue had a reference to the central body; and so, the ‘inherent virtue’ must have coincided in its effect with the Newtonian force; and then, the two explanations would agree, except so far as the word ‘inherent’ was concerned. And if such a part of an earlier theory as this word inherent indicates, is found to be untenable, it is of course rejected in the transition to later and more exact theories, in Inductions of this kind, as well as in what Mr. Mill calls Descriptions. There is, therefore, still no validity discoverable in the distinction which Mr. Mill attempts to draw between descriptions like Kepler's law of elliptical orbits, and other examples of induction.”