Now there is, I conceive, no difference in kind between this simple operation, and that by which Kepler ascertained the nature of the planetary orbits: and Kepler's operation, all at least that was characteristic in it, was not more an inductive act than that of our supposed navigator.
The object of Kepler was to determine the real path described by each of the planets, or let us say by the planet Mars, (for it was of that body that he first established two of the three great astronomical truths which bear his name.) To do this there was no other mode than that of direct [pg 302] observation: and all which observation could do was to ascertain a great number of the successive places of the planet; or rather, of its apparent places. That the planet occupied successively all these positions, or at all events, positions which produced the same impressions on the eye, and that it passed from one of these to another insensibly, and without any apparent breach of continuity; thus much the senses, with the aid of the proper instruments, could ascertain. What Kepler did more than this, was to find what sort of a curve these different points would make, supposing them to be all joined together. He expressed the whole series of the observed places of Mars by what Dr. Whewell calls the general conception of an ellipse. This operation was far from being as easy as that of the navigator who expressed the series of his observations on successive points of the coast by the general conception of an island. But it is the very same sort of operation; and if the one is not an induction but a description, this must also be true of the other.
To avoid misapprehension, we must remark that Kepler, in one respect, performed a real act of induction; namely, in concluding that because the observed places of Mars were correctly represented by points in an imaginary ellipse, therefore Mars would continue to revolve in that same ellipse; and even in concluding that the position of the planet during the time which intervened between two observations, must have coincided with the intermediate points of the curve. But this really inductive operation requires to be carefully distinguished from the mere act of bringing the facts actually observed under a general description. So distinct are these two operations, that the one might have been performed without the other. Men might and did make correct inductions concerning the heavenly motions, before they had obtained correct general descriptions of them. It was known that the planets always moved in the same paths, long before it had been ascertained that those paths were ellipses. Astronomers early remarked that the same set of apparent positions returned periodically. When they obtained a new [pg 303] description of the phenomenon, they did not necessarily make any further induction, nor (which is the true test of a new general truth) add anything to the power of prediction which they already possessed.
§ 4. The descriptive operation which enables a number of details to be summed up in a single proposition, Dr. Whewell, by an aptly chosen expression, has termed the Colligation of Facts.[55] In most of his observations concerning that mental process I fully agree, and would gladly transfer all that portion of his book into my own pages. I only think him mistaken in setting up this kind of operation, which according to the old and received meaning of the term, is not induction at all, as the type of induction generally; and laying down, throughout his work, as principles of induction, the principles of mere colligation.
Dr. Whewell maintains that the general proposition which binds together the particular facts, and makes them, as it were, one fact, is not the mere sum of those facts, but something more, since there is introduced a conception of the mind, which did not exist in the facts themselves. “The particular facts,” says he,[56] “are not merely brought together, but there is a new element added to the combination by the very act of thought by which they are combined.... When the Greeks, after long observing the motions of the planets, saw that these motions might be rightly considered as produced by the motion of one wheel revolving in the inside of another wheel, these wheels were creations of their minds, added to the facts which they perceived by sense. And even if the wheels were no longer supposed to be material, but were reduced to mere geometrical spheres or circles, they were not the less products of the mind alone,—something additional to the facts observed. The same is the case in all other discoveries. The facts are known, but they are insulated and unconnected, till the discoverer supplies from his own store a principle of connexion. The pearls are [pg 304] there, but they will not hang together till some one provides the string.”
That a conception of the mind is introduced is indeed undeniable, and I willingly concede, that to hit upon the right conception is often a far more difficult and more meritorious achievement, than to prove its applicability when obtained. But a conception implies, and corresponds to, something conceived: and though the conception itself is not in the facts, but in our mind, it must be a conception of something which really is in the facts, some property which they actually possess, and which they would manifest to our senses, if our senses were able to take cognizance of them. If, for instance, the planet left behind it in space a visible track, and if the observer were in a fixed position at such a distance above the plane of the orbit as would enable him to see the whole of it at once, he would see it to be an ellipse; and if gifted with appropriate instruments, and powers of locomotion, he could prove it to be such by measuring its different dimensions. These things are indeed impossible to us, but not impossible in themselves; if they were so, Kepler's law could not be true.
Subject to the indispensable condition which has just been stated, I cannot perceive that the part which conceptions have in the operation of studying facts, has ever been overlooked or undervalued. No one ever disputed that in order to reason about anything we must have a conception of it; or that when we include a multitude of things under a general expression, there is implied in the expression a conception of something common to those things. But it by no means follows that the conception is necessarily pre-existent, or constructed by the mind out of its own materials. If the facts are rightly classed under the conception, it is because there is in the facts themselves something of which the conception is itself a copy; and which if we cannot directly perceive, it is because of the limited power of our organs, and not because the thing itself is not there. The conception itself is often obtained by abstraction from the very facts which, in Dr. Whewell's language, it is afterwards [pg 305] called in to connect. This he himself admits, when he observes, (which he does on several occasions,) how great a service would be rendered to the science of physiology by the philosopher “who should establish a precise, tenable, and consistent conception of life.”[57] Such a conception can only be abstracted from the phenomena of life itself; from the very facts which it is put in requisition to connect. In other cases (no doubt) instead of collecting the conception from the very phenomena which we are attempting to colligate, we select it from among those which have been previously collected by abstraction from other facts. In the instance of Kepler's laws, the latter was the case. The facts being out of the reach of being observed, in any such manner as would have enabled the senses to identify directly the path of the planet, the conception requisite for framing a general description of that path could not be collected by abstraction from the observations themselves; the mind had to supply hypothetically, from among the conceptions it had obtained from other portions of its experience, some one which would correctly represent the series of the observed facts. It had to frame a supposition respecting the general course of the phenomenon, and ask itself, If this be the general description, what will the details be? and then compare these with the details actually observed. If they agreed, the hypothesis would serve for a description of the phenomenon: if not, it was necessarily abandoned, and another tried. It is such a case as this which gives rise to the doctrine that the mind, in framing the descriptions, adds something of its own which it does not find in the facts.
Yet it is a fact surely, that the planet does describe an ellipse; and a fact which we could see, if we had adequate visual organs and a suitable position. Not having these advantages, but possessing the conception of an ellipse, or (to express the meaning in less technical language) knowing what an ellipse was, Kepler tried whether the observed places of the planet were consistent with such a path. He found [pg 306] they were so; and he, consequently, asserted as a fact that the planet moved in an ellipse. But this fact, which Kepler did not add to, but found in, the motions of the planet, namely, that it occupied in succession the various points in the circumference of a given ellipse, was the very fact, the separate parts of which had been separately observed; it was the sum of the different observations.
Having stated this fundamental difference between my opinion and that of Dr. Whewell, I must add, that his account of the manner in which a conception is selected, suitable to express the facts, appears to me perfectly just. The experience of all thinkers will, I believe, testify that the process is tentative; that it consists of a succession of guesses; many being rejected, until one at last occurs fit to be chosen. We know from Kepler himself that before hitting upon the “conception” of an ellipse, he tried nineteen other imaginary paths, which, finding them inconsistent with the observations, he was obliged to reject. But as Dr. Whewell truly says, the successful hypothesis, though a guess, ought generally to be called, not a lucky, but a skilful guess. The guesses which serve to give mental unity and wholeness to a chaos of scattered particulars, are accidents which rarely occur to any minds but those abounding in knowledge and disciplined in intellectual combinations.
How far this tentative method, so indispensable as a means to the colligation of facts for purposes of description, admits of application to Induction itself, and what functions belong to it in that department, will be considered in the chapter of the present Book which relates to Hypotheses. On the present occasion we have chiefly to distinguish this process of Colligation from Induction properly so called: and that the distinction may be made clearer, it is well to advert to a curious and interesting remark, which is as strikingly true of the former operation, as it appears to me unequivocally false of the latter.