I am unwilling to leave the subject without adverting to the additional fallacy contained in the corollary from this [pg 371] theory; in the inference that because Volition is an efficient cause therefore it is the only cause, and the direct agent in producing even what is apparently produced by something else. Volitions are not known to produce anything directly except nervous action, for the will influences even the muscles only through the nerves. Though it were granted, then, that every phenomenon has an efficient, and not merely a phenomenal cause, and that volition, in the case of the peculiar phenomena which are known to be produced by it, is that efficient cause: are we therefore to say, with these writers, that since we know of no other efficient cause, and ought not to assume one without evidence, there is no other, and volition is the direct cause of all phenomena? A more outrageous stretch of inference could hardly be made. Because among the infinite variety of the phenomena of nature there is one, namely, a particular mode of action of certain nerves, which has for its cause, and as we are now supposing for its efficient cause, a state of our mind; and because this is the only efficient cause of which we are conscious, being the only one of which in the nature of the case we can be conscious, since it is the only one which exists within ourselves; does this justify us in concluding that all other phenomena must have the same kind of efficient cause with that one eminently special, narrow, and peculiarly human or animal, phenomenon? It is true there are cases in which, with acknowledged propriety, we generalize from a single instance to a multitude of instances. But they must be instances which resemble the one known instance, and not such as have no circumstance in common with it except that of being instances. I have, for example, no direct evidence that any creature is alive except myself: yet I attribute, with full assurance, life and sensation to other human beings and animals. But I do not conclude that all other things are alive merely because I am. I ascribe to certain other creatures a life like my own, because they manifest it by the same sort of indications by which mine is manifested. I find that their phenomena and mine conform to the same laws, and it is for this reason that I believe [pg 372] both to arise from a similar cause. Accordingly I do not extend the conclusion beyond the grounds for it. Earth, fire, mountains, trees, are remarkable agencies, but their phenomena do not conform to the same laws as my actions do, and I therefore do not believe earth or fire, mountains or trees, to possess animal life. But the supporters of the Volition Theory ask us to infer that volition causes everything, for no reason except that it causes one particular thing; although that one phenomenon, far from being a type of all natural phenomena, is eminently peculiar; its laws bearing scarcely any resemblance to those of any other phenomenon, whether of inorganic or of organic nature.[74]


CHAPTER VI. OF THE COMPOSITION OF CAUSES.

§ 1. To complete the general notion of causation on which the rules of experimental inquiry into the laws of nature must be founded, one distinction still remains to be pointed out: a distinction so radical, and of so much importance, as to require a chapter to itself.

The preceding discussions have rendered us familiar with the case in which several agents, or causes, concur as conditions to the production of an effect; a case, in truth, almost universal, there being very few effects to the production of which no more than one agent contributes. Suppose, then, that two different agents, operating jointly, are followed, under a certain set of collateral conditions, by a given effect. If either of these agents, instead of being joined with the other, had operated alone, under the same set of conditions in all other respects, some effect would probably have followed; which would have been different from the joint effect of the two, and more or less dissimilar to it. Now, if we happen to know what would be the effects of each cause when acting separately from the other, we are often able to arrive deductively, or à priori, at a correct prediction of what will arise from their conjunct agency. To enable us to do this, it is only necessary that the same law which expresses the effect of each cause acting by itself, shall also correctly express the part due to that cause, of the effect which follows from the two together. This condition is realised in the extensive and important class of phenomena commonly called mechanical, namely the phenomena of the communication of motion (or of pressure, which is tendency to motion) from one body to another. In this important class of cases of causation, one cause never, properly speaking, defeats or [pg 374] frustrates another; both have their full effect. If a body is propelled in two directions by two forces, one tending to drive it to the north, and the other to the east, it is caused to move in a given time exactly as far in both directions as the two forces would separately have carried it; and is left precisely where it would have arrived if it had been acted upon first by one of the two forces, and afterwards by the other. This law of nature is called, in dynamics, the principle of the Composition of Forces: and in imitation of that well-chosen expression, I shall give the name of the Composition of Causes to the principle which is exemplified in all cases in which the joint effect of several causes is identical with the sum of their separate effects.

This principle, however, by no means prevails in all departments of the field of nature. The chemical combination of two substances produces, as is well known, a third substance with properties entirely different from those of either of the two substances separately, or both of them taken together. Not a trace of the properties of hydrogen or of oxygen is observable in those of their compound, water. The taste of sugar of lead is not the sum of the tastes of its component elements, acetic acid and lead or its oxide; nor is the colour of green vitriol a mixture of the colours of sulphuric acid and copper. This explains why mechanics is a deductive or demonstrative science, and chemistry not. In the one, we can compute the effects of all combinations of causes, whether real or hypothetical, from the laws which we know to govern those causes when acting separately; because they continue to observe the same laws when in combination which they observed when separate: whatever would have happened in consequence of each cause taken by itself, happens when they are together, and we have only to cast up the results. Not so in the phenomena which are the peculiar subject of the science of chemistry. There, most of the uniformities to which the causes conformed when separate, cease altogether when they are conjoined; and we are not, at least in the present state of our knowledge, able to foresee what result will follow [pg 375] from any new combination, until we have tried the specific experiment.

If this be true of chemical combinations, it is still more true of those far more complex combinations of elements which constitute organised bodies; and in which those extraordinary new uniformities arise, which are called the laws of life. All organised bodies are composed of parts similar to those composing inorganic nature, and which have even themselves existed in an inorganic state; but the phenomena of life, which result from the juxtaposition of those parts in a certain manner, bear no analogy to any of the effects which would be produced by the action of the component substances considered as mere physical agents. To whatever degree we might imagine our knowledge of the properties of the several ingredients of a living body to be extended and perfected, it is certain that no mere summing up of the separate actions of those elements will ever amount to the action of the living body itself. The tongue, for instance, is, like all other parts of the animal frame, composed of gelatine, fibrin, and other products of the chemistry of digestion, but from no knowledge of the properties of those substances could we ever predict that it could taste, unless gelatine or fibrin could themselves taste; for no elementary fact can be in the conclusion, which was not first in the premisses.

There are thus two different modes of the conjunct action of causes; from which arise two modes of conflict, or mutual interference, between laws of nature. Suppose, at a given point of time and space, two or more causes, which, if they acted separately, would produce effects contrary, or at least conflicting with each other; one of them tending to undo, wholly or partially, what the other tends to do. Thus, the expansive force of the gases generated by the ignition of gunpowder tends to project a bullet towards the sky, while its gravity tends to make it fall to the ground. A stream running into a reservoir at one end tends to fill it higher and higher, while a drain at the other extremity tends to empty it. Now, in such cases as these, even if the two causes which [pg 376] are in joint action exactly annul one another, still the laws of both are fulfilled; the effect is the same as if the drain had been open for half an hour first,[75] and the stream had flowed in for as long afterwards. Each agent produced the same amount of effect as if it had acted separately, though the contrary effect which was taking place during the same time obliterated it as fast as it was produced. Here then, are two causes, producing by their joint operation an effect which at first seems quite dissimilar to those which they produce separately, but which on examination proves to be really the sum of those separate effects. It will be noticed that we here enlarge the idea of the sum of two effects, so as to include what is commonly called their difference, but which is in reality the result of the addition of opposites; a conception to which mankind are indebted for that admirable extension of the algebraical calculus, which has so vastly increased its powers as an instrument of discovery, by introducing into its reasonings (with the sign of subtraction prefixed, and under the name of Negative Quantities) every description whatever of positive phenomena, provided they are of such a quality in reference to those previously introduced, that to add the one is equivalent to subtracting an equal quantity of the other.

There is, then, one mode of the mutual interference of laws of nature, in which, even when the concurrent causes annihilate each other's effects, each exerts its full efficacy according to its own law, its law as a separate agent. But in the other description of cases, the agencies which are brought together cease entirely, and a totally different set of phenomena arise: as in the experiment of two liquids which, when mixed in certain proportions, instantly become a solid mass, instead of merely a larger amount of liquid.