We will illustrate this by two examples, in one of which the antecedent is the sum of many homogeneous, in the other of heterogeneous, parts. The weight of a body is made up of the weights of its minute particles; a truth which astronomers express in its most general terms when they say that bodies, at equal distances, gravitate to one another in proportion to their quantity of matter. All true propositions, therefore, which can be made concerning gravity, are derivative laws; the ultimate law into which they are all resolvable being, that every particle of matter attracts every other. As our second example, we may take any of the sequences observed in meteorology; for instance, a diminution of the pressure of the atmosphere (indicated by a fall of the barometer) is followed by rain. The antecedent is here a complex phenomenon, made up of heterogeneous elements; the column of the atmosphere over any particular place consisting of two parts, a column of air, and a column of aqueous vapor mixed with it; and the change in the two together manifested by a fall of the barometer, and followed by rain, must be either a change in one of these, or in the other, or in both. We might, then, even in the absence of any other evidence, form a reasonable presumption, from the invariable presence of both these elements in the antecedent, that the sequence is probably not an ultimate law, but a result of the laws of the two different agents; a presumption only to be destroyed when we had made ourselves so well acquainted with the laws of both, as to be able to affirm that those laws could not by themselves produce the observed result.

There are but few known cases of succession from very complex antecedents which have not either been actually accounted for from simpler laws, or inferred with great probability (from the ascertained existence of intermediate links of causation not yet understood) to be capable of being so accounted for. It is, therefore, highly probable that all sequences from complex antecedents are thus resolvable, and that ultimate laws are in all cases comparatively simple. If there were not the other reasons already mentioned for believing that the laws of organized nature are resolvable into simpler laws, it would be almost a sufficient reason that the antecedents in most of the sequences are so very complex.

§ 7. In the preceding discussion we have recognized two kinds of empirical laws: those known to be laws of causation, but presumed to be resolvable into simpler laws; and those not known to be laws of causation at all. Both these kinds of laws agree in the demand which they make for being explained by deduction, and agree in being the appropriate means of verifying such deduction, since they represent the experience with which the result of the deduction must be compared. They agree, further, in this, that until explained, and connected with the ultimate laws from which they result, they have not attained the highest degree of certainty of which laws are susceptible. It has been shown on a former occasion that laws [pg 372] of causation which are derivative, and compounded of simpler laws, are not only, as the nature of the case implies, less general, but even less certain, than the simpler laws from which they result; not in the same degree to be relied on as universally true. The inferiority of evidence, however, which attaches to this class of laws, is trifling, compared with that which is inherent in uniformities not known to be laws of causation at all. So long as these are unresolved, we can not tell on how many collocations, as well as laws, their truth may be dependent; we can never, therefore, extend them with any confidence to cases in which we have not assured ourselves, by trial, that the necessary collocation of causes, whatever it may be, exists. It is to this class of laws alone that the property, which philosophers usually consider as characteristic of empirical laws, belongs in all its strictness—the property of being unfit to be relied on beyond the limits of time, place, and circumstance in which the observations have been made. These are empirical laws in a more emphatic sense; and when I employ that term (except where the context manifestly indicates the reverse) I shall generally mean to designate those uniformities only, whether of succession or of co-existence, which are not known to be laws of causation.

Chapter XVII.

Of Chance And Its Elimination.

§ 1. Considering, then, as empirical laws only those observed uniformities respecting which the question whether they are laws of causation must remain undecided until they can be explained deductively, or until some means are found of applying the Method of Difference to the case, it has been shown in the preceding chapter that until a uniformity can, in one or the other of these modes, be taken out of the class of empirical laws, and brought either into that of laws of causation or of the demonstrated results of laws of causation, it can not with any assurance be pronounced true beyond the local and other limits within which it has been found so by actual observation. It remains to consider how we are to assure ourselves of its truth even within those limits; after what quantity of experience a generalization which rests solely on the Method of Agreement can be considered sufficiently established, even as an empirical law. In a former chapter, when treating of the Methods of Direct Induction, we expressly reserved this question,[174] and the time is now come for endeavoring to solve it.

We found that the Method of Agreement has the defect of not proving causation, and can, therefore, only be employed for the ascertainment of empirical laws. But we also found that besides this deficiency, it labors under a characteristic imperfection, tending to render uncertain even such conclusions as it is in itself adapted to prove. This imperfection arises from Plurality of Causes. Although two or more cases in which the phenomenon a has been met with may have no common antecedent except A, this does not prove that there is any connection between a and A, since a may have many causes, and may have been produced, in these different instances, not by any thing which the instances had in common, but by some of those elements in them which were different. We nevertheless [pg 373] observed, that in proportion to the multiplication of instances pointing to A as the antecedent, the characteristic uncertainty of the method diminishes, and the existence of a law of connection between A and a more nearly approaches to certainty. It is now to be determined after what amount of experience this certainty may be deemed to be practically attained, and the connection between A and a may be received as an empirical law.

This question may be otherwise stated in more familiar terms: After how many and what sort of instances may it be concluded that an observed coincidence between two phenomena is not the effect of chance?

It is of the utmost importance for understanding the logic of induction, that we should form a distinct conception of what is meant by chance, and how the phenomena which common language ascribes to that abstraction are really produced.