The generalization that an event occurs in ten out of every hundred cases of a given description, is as real an induction as if the generalization were that it occurs in all cases. But when we arrive at the conclusion by merely counting instances in actual experience, and comparing the number of cases in which A has been present with the number in which it has been absent, the evidence is only that of the Method of Agreement, and the conclusion amounts only to an empirical law. We can make a step beyond this when we can ascend to the causes on which the occurrence of A or its [pg 384] non-occurrence will depend, and form an estimate of the comparative frequency of the causes favorable and of those unfavorable to the occurrence. These are data of a higher order, by which the empirical law derived from a mere numerical comparison of affirmative and negative instances will be either corrected or confirmed, and in either case we shall obtain a more correct measure of probability than is given by that numerical comparison. It has been well remarked that in the kind of examples by which the doctrine of chances is usually illustrated, that of balls in a box, the estimate of probabilities is supported by reasons of causation, stronger than specific experience. “What is the reason that in a box where there are nine black balls and one white, we expect to draw a black ball nine times as much (in other words, nine times as often, frequency being the gauge of intensity in expectation) as a white? Obviously because the local conditions are nine times as favorable; because the hand may alight in nine places and get a black ball, while it can only alight in one place and find a white ball; just for the same reason that we do not expect to succeed in finding a friend in a crowd, the conditions in order that we and he should come together being many and difficult. This of course would not hold to the same extent were the white balls of smaller size than the black, neither would the probability remain the same; the larger ball would be much more likely to meet the hand.”[178]

It is, in fact, evident that when once causation is admitted as a universal law, our expectation of events can only be rationally grounded on that law. To a person who recognizes that every event depends on causes, a thing’s having happened once is a reason for expecting it to happen again, only because proving that there exists, or is liable to exist, a cause adequate to produce it.[179] The frequency of the particular event, apart from all surmise respecting its cause, can give rise to no other induction than that per enumerationem simplicem; and the precarious inferences derived from this are superseded, and disappear from the field as soon as the principle of causation makes its appearance there.

Notwithstanding, however, the abstract superiority of an estimate of probability grounded on causes, it is a fact that in almost all cases in which chances admit of estimation sufficiently precise to render their numerical appreciation of any practical value, the numerical data are not drawn from knowledge of the causes, but from experience of the events [pg 385] themselves. The probabilities of life at different ages or in different climates; the probabilities of recovery from a particular disease; the chances of the birth of male or female offspring; the chances of the destruction of houses or other property by fire; the chances of the loss of a ship in a particular voyage, are deduced from bills of mortality, returns from hospitals, registers of births, of shipwrecks, etc., that is, from the observed frequency not of the causes, but of the effects. The reason is, that in all these classes of facts the causes are either not amenable to direct observation at all, or not with the requisite precision, and we have no means of judging of their frequency except from the empirical law afforded by the frequency of the effects. The inference does not the less depend on causation alone. We reason from an effect to a similar effect by passing through the cause. If the actuary of an insurance office infers from his tables that among a hundred persons now living of a particular age, five on the average will attain the age of seventy, his inference is legitimate, not for the simple reason that this is the proportion who have lived till seventy in times past, but because the fact of their having so lived shows that this is the proportion existing, at that place and time, between the causes which prolong life to the age of seventy and those tending to bring it to an earlier close.[180]

§ 5. From the preceding principles it is easy to deduce the demonstration of that theorem of the doctrine of probabilities which is the foundation of its application to inquiries for ascertaining the occurrence of a given event, or the reality of an individual fact. The signs or evidences by which a fact is usually proved are some of its consequences; and the inquiry hinges upon determining what cause is most likely to have produced a given effect. The theorem applicable to such investigations is the Sixth Principle in Laplace’s “Essai Philosophique sur les Probabilités,” which is described by him as the “fundamental principle of that branch of the Analysis of Chances which consists in ascending from events to their causes.”[181]

Given an effect to be accounted for, and there being several causes which might have produced it, but of the presence of which in the particular case nothing is known; the probability that the effect was produced by any one of these causes is as the antecedent probability of the cause, multiplied by the probability that the cause, if it existed, would have produced the given effect.

Let M be the effect, and A, B, two causes, by either of which it might [pg 386] have been produced. To find the probability that it was produced by the one and not by the other, ascertain which of the two is most likely to have existed, and which of them, if it did exist, was most likely to produce the effect M: the probability sought is a compound of these two probabilities.

Case I. Let the causes be both alike in the second respect: either A or B, when it exists, being supposed equally likely (or equally certain) to produce M; but let A be in itself twice as likely as B to exist, that is, twice as frequent a phenomenon. Then it is twice as likely to have existed in this case, and to have been the cause which produced M.

For, since A exists in nature twice as often as B, in any 300 cases in which one or other existed, A has existed 200 times and B 100. But either A or B must have existed wherever M is produced; therefore, in 300 times that M is produced, A was the producing cause 200 times, B only 100, that is, in the ratio of 2 to 1. Thus, then, if the causes are alike in their capacity of producing the effect, the probability as to which actually produced it is in the ratio of their antecedent probabilities.

Case II. Reversing the last hypothesis, let us suppose that the causes are equally frequent, equally likely to have existed, but not equally likely, if they did exist, to produce M; that in three times in which A occurs, it produces that effect twice, while B, in three times, produces it only once. Since the two causes are equally frequent in their occurrence; in every six times that either one or the other exists, A exists three times and B three times. A, of its three times, produces M in two; B, of its three times, produces M in one. Thus, in the whole six times, M is only produced thrice; but of that thrice it is produced twice by A, once only by B. Consequently, when the antecedent probabilities of the causes are equal, the chances that the effect was produced by them are in the ratio of the probabilities that if they did exist they would produce the effect.

Case III. The third case, that in which the causes are unlike in both respects, is solved by what has preceded. For, when a quantity depends on two other quantities, in such a manner that while either of them remains constant it is proportional to the other, it must necessarily be proportional to the product of the two quantities, the product being the only function of the two which obeys that law of variation. Therefore, the probability that M was produced by either cause, is as the antecedent probability of the cause, multiplied by the probability that if it existed it would produce M. Which was to be demonstrated.