The inconsistency, however, is only apparent. Assuredly, if induction by simple enumeration were an invalid process, no process grounded on it could be valid; just as no reliance could be placed on telescopes, if we could not trust our eyes. But though a valid process, it is a fallible one, and fallible in very different degrees: if, therefore, we can substitute for the more fallible forms of the process, an operation grounded on the same process in a less fallible form, we shall have effected a very material improvement. And this is what scientific induction does.

A mode of concluding from experience must be pronounced untrustworthy when subsequent experience refuses to confirm it. According to this criterion, induction by simple enumeration—in other words, generalization of an observed fact from the mere absence of any known instance to the contrary—affords in general a precarious and unsafe ground of assurance; for such generalizations are incessantly discovered, on further experience, to be false. Still, however, it affords some assurance, sufficient, in many cases, for the ordinary guidance of conduct. It would be absurd to say, that the generalizations arrived at by mankind in the outset of their experience, such as these—food nourishes, fire burns, water drowns—were unworthy of reliance.[186] There is a scale of trustworthiness in the results [pg 402] of the original unscientific induction; and on this diversity (as observed in the fourth chapter of the present book) depend the rules for the improvement of the process. The improvement consists in correcting one of these inartificial generalizations by means of another. As has been already pointed out, this is all that art can do. To test a generalization, by showing that it either follows from, or conflicts with, some stronger induction, some generalization resting on a broader foundation of experience, is the beginning and end of the logic of induction.

§ 3. Now the precariousness of the method of simple enumeration is in an inverse ratio to the largeness of the generalization. The process is delusive and insufficient, exactly in proportion as the subject-matter of the observation is special and limited in extent. As the sphere widens, this unscientific method becomes less and less liable to mislead; and the most universal class of truths, the law of causation, for instance, and the principles of number and of geometry, are duly and satisfactorily proved by that method alone, nor are they susceptible of any other proof.

With respect to the whole class of generalizations of which we have recently treated, the uniformities which depend on causation, the truth of the remark just made follows by obvious inference from the principles laid down in the preceding chapters. When a fact has been observed a certain number of times to be true, and is not in any instance known to be false, if we at once affirm that fact as a universal truth or law of nature, without either testing it by any of the four methods of induction, or deducing it from other known laws, we shall in general err grossly; but we are perfectly justified in affirming it as an empirical law, true within certain limits of time, place, and circumstance, provided the number of coincidences be greater than can with any probability be ascribed to chance. The reason for not extending it beyond those limits is, that the fact of its holding true within them may be a consequence of collocations, which can not be concluded to exist in one place because they exist in another; or may be dependent on the accidental absence of counteracting agencies, which any variation of time, or the smallest change of circumstances, may possibly bring into play. If we suppose, then, the subject-matter of any generalization to be so widely diffused that there is no time, no place, and no combination of circumstances, but must afford an example either of its truth or of its falsity, and if it be never found otherwise than true, its truth can not be contingent on any collocations, unless such as exist at all times and places; nor can it be frustrated by any counteracting agencies, unless by such as never actually occur. It is, therefore, an empirical law co-extensive with all human experience; at which point the distinction between empirical laws and laws of nature vanishes, and the proposition takes its place among the most firmly established as well as largest truths accessible to science.

Now, the most extensive in its subject-matter of all generalizations which experience warrants, respecting the sequences and co-existences of phenomena, is the law of causation. It stands at the head of all observed uniformities, in point of universality, and therefore (if the preceding observations are correct) in point of certainty. And if we consider, not what mankind would have been justified in believing in the infancy of their knowledge, but what may rationally be believed in its present more advanced state, we shall find ourselves warranted in considering this fundamental law, though itself obtained by induction from particular laws of causation, [pg 403] as not less certain, but on the contrary, more so, than any of those from which it was drawn. It adds to them as much proof as it receives from them. For there is probably no one even of the best established laws of causation which is not sometimes counteracted, and to which, therefore, apparent exceptions do not present themselves, which would have necessarily and justly shaken the confidence of mankind in the universality of those laws, if inductive processes founded on the universal law had not enabled us to refer those exceptions to the agency of counteracting causes, and thereby reconcile them with the law with which they apparently conflict. Errors, moreover, may have slipped into the statement of any one of the special laws, through inattention to some material circumstance: and instead of the true proposition, another may have been enunciated, false as a universal law, though leading, in all cases hitherto observed, to the same result. To the law of causation, on the contrary, we not only do not know of any exception, but the exceptions which limit or apparently invalidate the special laws, are so far from contradicting the universal one, that they confirm it; since in all cases which are sufficiently open to our observation, we are able to trace the difference of result, either to the absence of a cause which had been present in ordinary cases, or to the presence of one which had been absent.

The law of cause and effect, being thus certain, is capable of imparting its certainty to all other inductive propositions which can be deduced from it; and the narrower inductions may be regarded as receiving their ultimate sanction from that law, since there is no one of them which is not rendered more certain than it was before, when we are able to connect it with that larger induction, and to show that it can not be denied, consistently with the law that every thing which begins to exist has a cause. And hence we are justified in the seeming inconsistency, of holding induction by simple enumeration to be good for proving this general truth, the foundation of scientific induction, and yet refusing to rely on it for any of the narrower inductions. I fully admit that if the law of causation were unknown, generalization in the more obvious cases of uniformity in phenomena would nevertheless be possible, and though in all cases more or less precarious, and in some extremely so, would suffice to constitute a certain measure of probability; but what the amount of this probability might be, we are dispensed from estimating, since it never could amount to the degree of assurance which the proposition acquires, when, by the application to it of the Four Methods, the supposition of its falsity is shown to be inconsistent with the Law of Causation. We are therefore logically entitled, and, by the necessities of scientific induction, required, to disregard the probabilities derived from the early rude method of generalizing, and to consider no minor generalization as proved except so far as the law of causation confirms it, nor probable except so far as it may reasonably be expected to be so confirmed.

§ 4. The assertion, that our inductive processes assume the law of causation, while the law of causation is itself a case of induction, is a paradox, only on the old theory of reasoning, which supposes the universal truth, or major premise, in a ratiocination, to be the real proof of the particular truths which are ostensibly inferred from it. According to the doctrine maintained in the present treatise,[187] the major premise is not the proof of [pg 404] the conclusion, but is itself proved, along with the conclusion from the same evidence. “All men are mortal” is not the proof that Lord Palmerston is mortal; but our past experience of mortality authorizes us to infer both the general truth and the particular fact, and the one with exactly the same degree of assurance as the other. The mortality of Lord Palmerston is not an inference from the mortality of all men, but from the experience which proves the mortality of all men; and is a correct inference from experience, if that general truth is so too. This relation between our general beliefs and their particular applications holds equally true in the more comprehensive case which we are now discussing. Any new fact of causation inferred by induction, is rightly inferred, if no other objection can be made to the inference than can be made to the general truth that every event has a cause. The utmost certainty which can be given to a conclusion arrived at in the way of inference, stops at this point. When we have ascertained that the particular conclusion must stand or fall with the general uniformity of the laws of nature—that it is liable to no doubt except the doubt whether every event has a cause—we have done all that can be done for it. The strongest assurance we can obtain of any theory respecting the cause of a given phenomenon, is that the phenomenon has either that cause or none.

The latter supposition might have been an admissible one in a very early period of our study of nature. But we have been able to perceive that in the stage which mankind have now reached, the generalization which gives the Law of Universal Causation has grown into a stronger and better induction, one deserving of greater reliance, than any of the subordinate generalizations. We may even, I think, go a step further than this, and regard the certainty of that great induction as not merely comparative, but, for all practical purposes, complete.

The considerations, which, as I apprehend, give, at the present day, to the proof of the law of uniformity of succession as true of all phenomena without exception, this character of completeness and conclusiveness, are the following: First, that we now know it directly to be true of far the greatest number of phenomena; that there are none of which we know it not to be true, the utmost that can be said being, that of some we can not positively from direct evidence affirm its truth; while phenomenon after phenomenon, as they become better known to us, are constantly passing from the latter class into the former; and in all cases in which that transition has not yet taken place, the absence of direct proof is accounted for by the rarity or the obscurity of the phenomena, our deficient means of observing them, or the logical difficulties arising from the complication of the circumstances in which they occur; insomuch that, notwithstanding as rigid a dependence on given conditions as exists in the case of any other phenomenon, it was not likely that we should be better acquainted with those conditions than we are. Besides this first class of considerations, there is a second, which still further corroborates the conclusion. Although there are phenomena the production and changes of which elude all our attempts to reduce them universally to any ascertained law; yet in every such case, the phenomenon, or the objects concerned in it, are found in some instances to obey the known laws of nature. The wind, for example, is the type of uncertainty and caprice, yet we find it in some cases obeying with as much constancy as any phenomenon in nature the law of the tendency of fluids to distribute themselves so as to equalize the pressure on every side of each of their particles; as in the case of the trade-winds and the monsoons.

Lightning might once have been supposed to obey no laws; but since it has been ascertained to be identical with electricity, we know that the very same phenomenon in some of its manifestations is implicitly obedient to the action of fixed causes. I do not believe that there is now one object or event in all our experience of nature, within the bounds of the solar system at least, which has not either been ascertained by direct observation to follow laws of its own, or been proved to be closely similar to objects and events which, in more familiar manifestations, or on a more limited scale, follow strict laws; our inability to trace the same laws on a larger scale and in the more recondite instances, being accounted for by the number and complication of the modifying causes, or by their inaccessibility to observation.