It is assumed by all the disputants in the “De Finibus” as the foundation of the inquiry into the summum bonum, that “sapiens semper beatus est.” Not simply that wisdom gives the best chance of happiness, or that wisdom consists in knowing what happiness is, and by what things it is promoted; these propositions would not have been enough for them; but that the sage always is, and must of necessity be, happy. The idea that wisdom could be consistent with unhappiness, was always rejected as inadmissible: the reason assigned by one of the interlocutors, near the beginning of the third book, being, that if the wise could be unhappy, there was little use in pursuing wisdom. But by unhappiness they did not mean pain or suffering; to that it was granted that the wisest person was liable in common with others: he was happy, because in possessing wisdom he had the most valuable of all possessions, the most to be sought and prized of all things, and to possess the most valuable thing was to be the most happy. By laying it down, therefore, at the commencement of the inquiry, that the sage must be happy, the disputed question respecting the summum bonum was in fact begged; with the further assumption, that pain and suffering, so far as they can co-exist with wisdom, are not unhappiness, and are no evil.
The following are additional instances of Petitio Principii, under more or less of disguise.
Plato, in the Sophistes, attempts to prove that things may exist which are incorporeal, by the argument that justice and wisdom are incorporeal, and justice and wisdom must be something. Here, if by something be meant, as Plato did in fact mean, a thing capable of existing in and by itself, and not as a quality of some other thing, he begs the question in asserting that justice and wisdom must be something; if he means any thing else, his conclusion is not proved. This fallacy might also be classed under ambiguous middleterm; something, in the one premise, meaning some substance, in the other merely some object of thought, whether substance or attribute.
It was formerly an argument employed in proof of what is now no longer a popular doctrine, the infinite divisibility of matter, that every portion of matter however small, must at least have an upper and an under surface. Those who used this argument did not see that it assumed the very point in dispute, the impossibility of arriving at a minimum of thickness; for if there be a minimum, its upper and under surface will of course be one; it will be itself a surface, and no more. The argument owes its very considerable plausibility to this, that the premise does actually seem more obvious than the conclusion, though really identical with it. As expressed in the premise, the proposition appeals directly and in concrete language to the incapacity of the human imagination for conceiving a minimum. Viewed in this light, it becomes a case of the a priori fallacy or natural prejudice, that whatever can not be conceived can not exist. Every fallacy [pg 575] of Confusion (it is almost unnecessary to repeat) will, if cleared up, become a fallacy of some other sort; and it will be found of deductive or ratiocinative fallacies generally, that when they mislead, there is mostly, as in this case, a fallacy of some other description lurking under them, by virtue of which chiefly it is that the verbal juggle, which is the outside or body of this kind of fallacy, passes undetected.
Euler’s Algebra, a book otherwise of great merit, but full, to overflowing, of logical errors in respect to the foundation of the science, contains the following argument to prove that minus multiplied by minus gives plus, a doctrine the opprobrium of all mere mathematicians, and which Euler had not a glimpse of the true method of proving. He says minus multiplied by minus can not give minus; for minus multiplied by plus gives minus, and minus multiplied by minus can not give the same product as minus multiplied by plus. Now one is obliged to ask, why minus multiplied by minus must give any product at all? and if it does, why its product can not be the same as that of minus multiplied by plus? for this would seem, at the first glance, not more absurd than that minus by minus should give the same as plus by plus, the proposition which Euler prefers to it. The premise requires proof, as much as the conclusion; nor can it be proved, except by that more comprehensive view of the nature of multiplication, and of algebraic processes in general, which would also supply a far better proof of the mysterious doctrine which Euler is here endeavoring to demonstrate.
A striking instance of reasoning in a circle is that of some ethical writers, who first take for their standard of moral truth what, being the general, they deem to be the natural or instinctive sentiments and perceptions of mankind, and then explain away the numerous instances of divergence from their assumed standard, by representing them as cases in which the perceptions are unhealthy. Some particular mode of conduct or feeling is affirmed to be unnatural; why? because it is abhorrent to the universal and natural sentiments of mankind. Finding no such sentiment in yourself, you question the fact; and the answer is (if your antagonist is polite), that you are an exception, a peculiar case. But neither (say you) do I find in the people of some other country, or of some former age, any such feeling of abhorrence; “ay, but their feelings were sophisticated and unhealthy.”
One of the most notable specimens of reasoning in a circle is the doctrine of Hobbes, Rousseau, and others, which rests the obligations by which human beings are bound as members of society, on a supposed social compact. I waive the consideration of the fictitious nature of the compact itself; but when Hobbes, through the whole Leviathan, elaborately deduces the obligation of obeying the sovereign, not from the necessity or utility of doing so, but from a promise supposed to have been made by our ancestors, on renouncing savage life and agreeing to establish political society, it is impossible not to retort by the question, Why are we bound to keep a promise made for us by others? or why bound to keep a promise at all? No satisfactory ground can be assigned for the obligation, except the mischievous consequences of the absence of faith and mutual confidence among mankind. We are, therefore, brought round to the interests of society, as the ultimate ground of the obligation of a promise; and yet those interests are not admitted to be a sufficient justification for the existence of government and law. Without a promise it is thought that we should not be bound to that which is implied in all modes of living in society, [pg 576] namely, to yield a general obedience to the laws therein established; and so necessary is the promise deemed, that if none has actually been made, some additional safety is supposed to be given to the foundations of society by feigning one.
§ 3. Two principal subdivisions of the class of Fallacies of Confusion having been disposed of; there remains a third, in which the confusion is not, as in the Fallacy of Ambiguity, in misconceiving the import of the premises, nor, as in Petitio Principii, in forgetting what the premises are, but in mistaking the conclusion which is to be proved. This is the fallacy of Ignoratio Elenchi, in the widest sense of the phrase; also called by Archbishop Whately the Fallacy of Irrelevant Conclusion. His examples and remarks are highly worthy of citation.
“Various kinds of propositions are, according to the occasion, substituted for the one of which proof is required; sometimes the particular for the universal; sometimes a proposition with different terms; and various are the contrivances employed to effect and to conceal this substitution, and to make the conclusion which the sophist has drawn, answer practically the same purpose as the one he ought to have established. We say, ‘practically the same purpose,’ because it will very often happen that some emotion will be excited, some sentiment impressed on the mind (by a dexterous employment of this fallacy), such as shall bring men into the disposition requisite for your purpose; though they may not have assented to, or even stated distinctly in their own minds, the proposition which it was your business to establish. Thus if a sophist has to defend one who has been guilty of some serious offense, which he wishes to extenuate, though he is unable distinctly to prove that it is not such, yet if he can succeed in making the audience laugh at some casual matter, he has gained practically the same point. So also if any one has pointed out the extenuating circumstances in some particular case of offense, so as to show that it differs widely from the generality of the same class, the sophist, if he finds himself unable to disprove these circumstances, may do away the force of them, by simply referring the action to that very class, which no one can deny that it belongs to, and the very name of which will excite a feeling of disgust sufficient to counteract the extenuation; e.g., let it be a case of peculation, and that many mitigating circumstances have been brought forward which can not be denied; the sophistical opponent will reply, ‘Well, but after all, the man is a rogue, and there is an end of it;’ now in reality this was (by hypothesis) never the question; and the mere assertion of what was never denied ought not, in fairness, to be regarded as decisive; but, practically, the odiousness of the word, arising in great measure from the association of those very circumstances which belong to most of the class, but which we have supposed to be absent in this particular instance, excites precisely that feeling of disgust which, in effect, destroys the force of the defense. In like manner we may refer to this head all cases of improper appeal to the passions, and every thing else which is mentioned by Aristotle as extraneous to the matter in hand (ἔξω τοῦ πράγματος).”
Again, “instead of proving that ‘this prisoner has committed an atrocious fraud,’ you prove that the fraud he is accused of is atrocious; instead of proving (as in the well-known tale of Cyrus and the two coats) that the taller boy had a right to force the other boy to exchange coats with him, you prove that the exchange would have been advantageous to both; instead [pg 577] of proving that the poor ought to be relieved in this way rather than in that, you prove that the poor ought to be relieved; instead of proving that the irrational agent—whether a brute or a madman—can never be deterred from any act by apprehension of punishment (as, for instance, a dog from sheep-biting, by fear of being beaten), you prove that the beating of one dog does not operate as an example to other dogs, etc.