It is certainly possible that a careless learner here and there may suppose that if A carries B, it follows that B carries A. But if any one is so incautious as to commit this mistake, the very earliest lesson in the logic of inference, the Conversion of propositions, will correct it. The first of the two forms in which I have stated the axiom, is in some degree open to Mr. Bain’s criticism: when B is said to co-exist with A (it must be by a lapsus calami that Mr. Bain uses the word coincide), it is possible, in the absence of warning, to suppose the meaning to be that the two things are only found together. But this misinterpretation is excluded by the other, or practical, form of the maxim; Nota notœ est nota rei ipsius. No one would be in any danger of inferring that because a is a mark of b, b can never exist without a; that because being in a confirmed consumption is a mark of being about to die, no one dies who is not in a consumption; that because being coal is a mark of having come out of the earth, nothing can come out of the earth except coal. Ordinary knowledge of English seems a sufficient protection against these mistakes, since in speaking of a mark of any thing we are never understood as implying reciprocity.
A more fundamental objection is stated by Mr. Bain in a subsequent passage (p. 158). “The axiom does not accommodate itself to the type of Deductive Reasoning as contrasted with Induction—the application of a general principle to a special case. Any thing that fails to make prominent this circumstance is not adapted as a foundation for the syllogism.” But though it may be proper to limit the term Deduction to the application of a general principle to a special case, it has never been held that Ratiocination or Syllogism is subject to the same limitation; and the adoption of it would exclude a great amount of valid and conclusive syllogistic reasoning. Moreover, if the dictum de omni makes prominent the fact of the application of a general principle to a particular case, the axiom I propose makes prominent the condition which alone makes that application a real inference.
I conclude, therefore, that both forms have their value, and their place in Logic. The dictum de omni should be retained as the fundamental axiom of the logic of mere consistency, often called Formal Logic; nor have I ever quarreled with the use of it in that character, nor proposed to banish it from treatises on Formal Logic. But the other is the proper axiom for the logic of the pursuit of truth by way of Deduction; and the recognition of it can alone show how it is possible that deductive reasoning can be a road to truth.
A writer in the “British Quarterly Review” (August, 1846), in a review of this treatise, endeavors to show that there is no petitio principii in the syllogism, by denying that the proposition, All men are mortal, asserts or assumes that Socrates is mortal. In support of this denial, he argues that we may, and in fact do, admit the general proposition that all men are mortal, without having particularly examined the case of Socrates, and even without knowing whether the individual so named is a man or something else. But this of course was never denied. That we can and do draw conclusions concerning cases specifically unknown to us, is the datum from which all who discuss this subject must set out. The question is, in what terms the evidence, or ground, on which we draw these conclusions, may best be designated—whether it is most correct to say, that the unknown case is proved by known cases, or that it is proved by a general proposition including both sets of cases, the unknown and the known? I contend for the former mode of expression. I hold it an abuse of language to say, that the proof that Socrates is mortal, is that all men are mortal. Turn it in what way we will, this seems to me to be asserting that a thing is the proof of itself. Whoever pronounces the words, All men are mortal, has affirmed that Socrates is mortal, though he may never have heard of Socrates; for since Socrates, whether known to be so or not, really is a man, he is included in the words, All men, and in every assertion of which they are the subject. If the reviewer does not see that there is a difficulty here, I can only advise him to reconsider the subject until he does: after which he will be a better judge of the success or failure of an attempt to remove the difficulty. That he had reflected very little on the point when he wrote his remarks, is shown by his oversight respecting the dictum de omni et nullo. He acknowledges that this maxim as commonly expressed—“Whatever is true of a class, is true of every thing included in the class,” is a mere identical proposition, since the class is nothing but the things included in it. But he thinks this defect would be cured by wording the maxim thus—“Whatever is true of a class, is true of every thing which can be shown to be a member of the class:” as if a thing could “be shown” to be a member of the class without being one. If a class means the sum of all the things included in the class, the things which can “be shown” to be included in it are part of the sum, and the dictum is as much an identical proposition with respect to them as to the rest. One would almost imagine that, in the reviewer’s opinion, things are not members of a class until they are called up publicly to take their place in it—that so long, in fact, as Socrates is not known to be a man, he is not a man, and any assertion which can be made concerning men does not at all regard him, nor is affected as to its truth or falsity by any thing in which he is concerned.
The difference between the reviewer’s theory and mine may be thus stated. Both admit that when we say, All men are mortal, we make an assertion reaching beyond the sphere of our knowledge of individual cases; and that when a new individual, Socrates, is brought within the field of our knowledge by means of the minor premise, we learn that we have already made an assertion respecting Socrates without knowing it: our own general formula being, to that extent, for the first time interpreted to us. But according to the reviewer’s theory, the smaller assertion is proved by the larger: while I contend, that both assertions are proved together, by the same evidence, namely, the grounds of experience on which the general assertion was made, and by which it must be justified.
The reviewer says, that if the major premise included the conclusion, “we should be able to affirm the conclusion without the intervention of the minor premise; but every one sees that that is impossible.” A similar argument is urged by Mr. De Morgan (Formal Logic, p. 259): “The whole objection tacitly assumes the superfluity of the minor; that is, tacitly assumes we know Socrates (Mr. De Morgan says ‘Plato,’ but to prevent confusion I have kept to my own exemplum.) to be a man as soon as we know him to be Socrates.” The objection would be well grounded if the assertion that the major premise includes the conclusion, meant that it individually specifies all it includes. As, however, the only indication it gives is a description by marks, we have still to compare any new individual with the marks; and to show that this comparison has been made, is the office of the minor. But since, by supposition, the new individual has the marks, whether we have ascertained him to have them or not; if we have affirmed the major premise, we have asserted him to be mortal. Now my position is that this assertion can not be a necessary part of the argument. It can not be a necessary condition of reasoning that we should begin by making an assertion, which is afterward to be employed in proving a part of itself. I can conceive only one way out of this difficulty, viz., that what really forms the proof is the other part of the assertion: the portion of it, the truth of which has been ascertained previously: and that the unproved part is bound up in one formula with the proved part in mere anticipation, and as a memorandum of the nature of the conclusions which we are prepared to prove.
With respect to the minor premise in its formal shape, the minor as it stands in the syllogism, predicating of Socrates a definite class name, I readily admit that it is no more a necessary part of reasoning than the major. When there is a major, doing its work by means of a class name, minors are needed to interpret it: but reasoning can be carried on without either the one or the other. They are not the conditions of reasoning, but a precaution against erroneous reasoning. The only minor premise necessary to reasoning in the example under consideration, is, Socrates is like A, B, C, and the other individuals who are known to have died. And this is the only universal type of that step in the reasoning process which is represented by the minor. Experience, however, of the uncertainty of this loose mode of inference, teaches the expediency of determining beforehand what kind of likeness to the cases observed, is necessary to bring an unobserved case within the same predicate; and the answer to this question is the major. The minor then identifies the precise kind of likeness possessed by Socrates, as being the kind required by the formula. Thus the syllogistic major and the syllogistic minor start into existence together, and are called forth by the same exigency. When we conclude from personal experience without referring to any record—to any general theorems, either written, or traditional, or mentally registered by ourselves as conclusions of our own drawing—we do not use, in our thoughts, either a major or a minor, such as the syllogism puts into words. When, however, we revise this rough inference from particulars to particulars, and substitute a careful one, the revision consists in selecting two syllogistic premises. But this neither alters nor adds to the evidence we had before; it only puts us in a better position for judging whether our inference from particulars to particulars is well grounded.
Some persons find themselves prevented from believing that the axiom, Two straight lines can not inclose a space, could ever become known to us through experience, by a difficulty which may be stated as follows: If the straight lines spoken of are those contemplated in the definition—lines absolutely without breadth and absolutely straight—that such are incapable of inclosing a space is not proved by experience, for lines such as these do not present themselves in our experience. If, on the other hand, the lines meant are such straight lines as we do meet with in experience, lines straight enough for practical purposes, but in reality slightly zigzag, and with some, however trifling, breadth; as applied to these lines the axiom is not true, for two of them may, and sometimes do, inclose a small portion of space. In neither case, therefore, does experience prove the axiom.
Those who employ this argument to show that geometrical axioms can not be proved by induction, show themselves unfamiliar with a common and perfectly valid mode of inductive proof; proof by approximation. Though experience furnishes us with no lines so unimpeachably straight that two of them are incapable of inclosing the smallest space, it presents us with gradations of lines possessing less and less either of breadth or of flexure, of which series the straight line of the definition is the ideal limit. And observation shows that just as much, and as nearly, as the straight lines of experience approximate to having no breadth or flexure, so much and so nearly does the space-inclosing power of any two of them approach to zero. The inference that if they had no breadth or flexure at all, they would inclose no space at all, is a correct inductive inference from these facts, conformable to one of the four Inductive Methods hereinafter characterized, the Method of Concomitant Variations; of which the mathematical Doctrine of Limits presents the extreme case.
Dr. Whewell (Philosophy of Discovery, p. 289) thinks it unreasonable to contend that we know by experience, that our idea of a line exactly resembles a real line. “It does not appear,” he says, “how we can compare our ideas with the realities, since we know the realities only by our ideas.” We know the realities by our sensations. Dr. Whewell surely does not hold the “doctrine of perception by means of ideas,” which Reid gave himself so much trouble to refute. If Dr. Whewell doubts whether we compare our ideas with the corresponding sensations, and assume that they resemble, let me ask on what evidence do we judge that a portrait of a person not present is like the original. Surely because it is like our idea, or mental image of the person, and because our idea is like the man himself.