Dr. M’Cosh maintains (Examination of Mr. J. S. Mill’s Philosophy, p. 257) that the uniformity of the course of nature is a different thing from the law of causation; and while he allows that the former is only proved by a long continuance of experience, and that it is not inconceivable nor necessarily incredible that there may be worlds in which it does not prevail, he considers the law of causation to be known intuitively. There is, however, no other uniformity in the events of nature than that which arises from the law of causation: so long therefore as there remained any doubt that the course of nature was uniform throughout, at least when not modified by the intervention of a new (supernatural) cause, a doubt was necessarily implied, not indeed of the reality of causation, but of its universality. If the uniformity of the course of nature has any exceptions—if any events succeed one another without fixed laws—to that extent the law of causation fails; there are events which do not depend on causes.
Professor Bain (Logic, ii., 13) mentions two empirical laws, which he considers to be, with the exception of the law connecting Gravity with Resistance to motion, “the two most widely operating laws as yet discovered whereby two distinct properties are conjoined throughout substances generally.” The first is, “a law connecting Atomic Weight and Specific Heat by an inverse proportion. For equal weights of the simple bodies, the atomic weight multiplied by a number expressing the specific heat, gives a nearly uniform product. The products, for all the elements, are near the constant number 6.” The other is a law which obtains “between the specific gravity of substances in the gaseous state, and the atomic weights. The relationship of the two numbers is in some instances equality; in other instances the one is a multiple of the other.”
Neither of these generalizations has the smallest appearance of being an ultimate law. They point unmistakably to higher laws. Since the heat necessary to raise to a given temperature the same weight of different substances (called their specific heat) is inversely as their atomic weight, that is, directly as the number of atoms in a given weight of the substance, it follows that a single atom of every substance requires the same amount of heat to raise it to a given temperature; a most interesting and important law, but a law of causation. The other law mentioned by Mr. Bain points to the conclusion, that in the gaseous state all substances contain, in the same space, the same number of atoms; which, as the gaseous state suspends all cohesive force, might naturally be expected, though it could not have been positively assumed. This law may also be a result of the mode of action of causes, namely, of molecular motions. The cases in which one of the numbers is not identical with the other, but a multiple of it, may be explained on the nowise unlikely supposition, that in our present estimate of the atomic weights of some substances, we mistake two, or three, atoms for one, or one for several.
Dr. M’Cosh (p. 324 of his book) considers the laws of the chemical composition of bodies as not coming under the principle of Causation; and thinks it an omission in this work not to have provided special canons for their investigation and proof. But every case of chemical composition is, as I have explained, a case of causation. When it is said that water is composed of hydrogen and oxygen, the affirmation is that hydrogen and oxygen, by the action on one another which they exert under certain conditions, generate the properties of water. The Canons of Induction, therefore, as laid down in this treatise, are applicable to the case. Such special adaptations as the Inductive methods may require in their application to chemistry, or any other science, are a proper subject for any one who treats of the logic of the special sciences, as Professor Bain has done in the latter part of his work; but they do not appertain to General Logic.
Dr. M’Cosh also complains (p. 325) that I have given no canons for those sciences in which “the end sought is not the discovery of Causes or of Composition, but of Classes; that is, Natural Classes.” Such canons could be no other than the principles and rules of Natural Classification, which I certainly thought that I had expounded at considerable length. But this is far from the only instance in which Dr. M’Cosh does not appear to be aware of the contents of the books he is criticising.
The evaluation of the chances in this statement has been objected to by a mathematical friend. The correct mode, in his opinion, of setting out the possibilities is as follows. If the thing (let us call it T) which is both an A and a C, is a B, something is true which is only true twice in every thrice, and something else which is only true thrice in every four times. The first fact being true eight times in twelve, and the second being true six times in every eight, and consequently six times in those eight; both facts will be true only six times in twelve. On the other hand, if T, although it is both an A and a C, is not a B, something is true which is only true once in every thrice, and something else which is only true once in every four times. The former being true four times out of twelve, and the latter once in every four, and therefore once in those four; both are only true in one case out of twelve. So that T is a B six times in twelve, and T is not a B, only once: making the comparative probabilities, not eleven to one, as I had previously made them, but six to one.
In the last edition I accepted this reasoning as conclusive. More attentive consideration, however, has convinced me that it contains a fallacy.
The objector argues, that the fact of A’s being a B is true eight times in twelve, and the fact of C’s being a B six times in eight, and consequently six times in those eight; both facts, therefore, are true only six times in every twelve. That is, he concludes that because among As taken indiscriminately only eight out of twelve are Bs and the remaining four are not, it must equally hold that four out of twelve are not Bs when the twelve are taken from the select portion of As which are also Cs. And by this assumption he arrives at the strange result, that there are fewer Bs among things which are both As and Cs than there are among either As or Cs taken indiscriminately; so that a thing which has both chances of being a B, is less likely to be so than if it had only the one chance or only the other.
The objector (as has been acutely remarked by another correspondent) applies to the problem under consideration, a mode of calculation only suited to the reverse problem. Had the question been—If two of every three Bs are As and three out of every four Bs are Cs, how many Bs will be both As and Cs, his reasoning would have been correct. For the Bs that are both As and Cs must be fewer than either the Bs that are As or the Bs that are Cs, and to find their number we must abate either of these numbers in the ratio due to the other. But when the problem is to find, not how many Bs are both As and Cs, but how many things that are both As and Cs are Bs, it is evident that among these the proportion of Bs must be not less, but greater, than among things which are only A, or among things which are only B.
The true theory of the chances is best found by going back to the scientific grounds on which the proportions rest. The degree of frequency of a coincidence depends on, and is a measure of, the frequency, combined with the efficacy, of the causes in operation that are favorable to it. If out of every twelve As taken indiscriminately eight are Bs and four are not, it is implied that there are causes operating on A which tend to make it a B, and that these causes are sufficiently constant and sufficiently powerful to succeed in eight out of twelve cases, but fail in the remaining four. So if of twelve Cs, nine are Bs and three are not, there must be causes of the same tendency operating on C, which succeed in nine cases and fail in three. Now suppose twelve cases which are both As and Cs. The whole twelve are now under the operation of both sets of causes. One set is sufficient to prevail in eight of the twelve cases, the other in nine. The analysis of the cases shows that six of the twelve will be Bs through the operation of both sets of causes; two more in virtue of the causes operating on A; and three more through those operating on C, and that there will be only one case in which all the causes will be inoperative. The total number, therefore, which are Bs will be eleven in twelve, and the evaluation in the text is correct.