Chapter II.

Of Inductions Improperly So Called.

§ 1. Induction, then, is that operation of the mind, by which we infer that what we know to be true in a particular case or cases, will be true in all cases which resemble the former in certain assignable respects. In other words, Induction is the process by which we conclude that what is true of certain individuals of a class is true of the whole class, or that what is true at certain times will be true in similar circumstances at all times.

This definition excludes from the meaning of the term Induction, various logical operations, to which it is not unusual to apply that name.

Induction, as above defined, is a process of inference; it proceeds from the known to the unknown; and any operation involving no inference, any process in which what seems the conclusion is no wider than the premises from which it is drawn, does not fall within the meaning of the term. Yet [pg 211] in the common books of Logic we find this laid down as the most perfect, indeed the only quite perfect, form of induction. In those books, every process which sets out from a less general and terminates in a more general expression—which admits of being stated in the form, “This and that A are B, therefore every A is B”—is called an induction, whether any thing be really concluded or not: and the induction is asserted not to be perfect, unless every single individual of the class A is included in the antecedent, or premise: that is, unless what we affirm of the class has already been ascertained to be true of every individual in it, so that the nominal conclusion is not really a conclusion, but a mere re-assertion of the premises. If we were to say, All the planets shine by the sun’s light, from observation of each separate planet, or All the Apostles were Jews, because this is true of Peter, Paul, John, and every other apostle—these, and such as these, would, in the phraseology in question, be called perfect, and the only perfect, Inductions. This, however, is a totally different kind of induction from ours; it is not an inference from facts known to facts unknown, but a mere short-hand registration of facts known. The two simulated arguments which we have quoted, are not generalizations; the propositions purporting to be conclusions from them, are not really general propositions. A general proposition is one in which the predicate is affirmed or denied of an unlimited number of individuals; namely, all, whether few or many, existing or capable of existing, which possess the properties connoted by the subject of the proposition. “All men are mortal” does not mean all now living, but all men past, present, and to come. When the signification of the term is limited so as to render it a name not for any and every individual falling under a certain general description, but only for each of a number of individuals, designated as such, and as it were counted off individually, the proposition, though it may be general in its language, is no general proposition, but merely that number of singular propositions, written in an abridged character. The operation may be very useful, as most forms of abridged notation are; but it is no part of the investigation of truth, though often bearing an important part in the preparation of the materials for that investigation.

As we may sum up a definite number of singular propositions in one proposition, which will be apparently, but not really, general, so we may sum up a definite number of general propositions in one proposition, which will be apparently, but not really, more general. If by a separate induction applied to every distinct species of animals, it has been established that each possesses a nervous system, and we affirm thereupon that all animals have a nervous system; this looks like a generalization, though as the conclusion merely affirms of all what has already been affirmed of each, it seems to tell us nothing but what we knew before. A distinction, however, must be made. If in concluding that all animals have a nervous system, we mean the same thing and no more as if we had said “all known animals,” the proposition is not general, and the process by which it is arrived at is not induction. But if our meaning is that the observations made of the various species of animals have discovered to us a law of animal nature, and that we are in a condition to say that a nervous system will be found even in animals yet undiscovered, this indeed is an induction; but in this case the general proposition contains more than the sum of the special propositions from which it is inferred. The distinction is still more forcibly brought out when we consider, that if this real generalization be legitimate at all, its legitimacy probably does not require that [pg 212] we should have examined without exception every known species. It is the number and nature of the instances, and not their being the whole of those which happen to be known, that makes them sufficient evidence to prove a general law: while the more limited assertion, which stops at all known animals, can not be made unless we have rigorously verified it in every species. In like manner (to return to a former example) we might have inferred, not that all the planets, but that all planets, shine by reflected light: the former is no induction; the latter is an induction, and a bad one, being disproved by the case of double stars—self-luminous bodies which are properly planets, since they revolve round a centre.

§ 2. There are several processes used in mathematics which require to be distinguished from Induction, being not unfrequently called by that name, and being so far similar to Induction properly so called, that the propositions they lead to are really general propositions. For example, when we have proved with respect to the circle, that a straight line can not meet it in more than two points, and when the same thing has been successively proved of the ellipse, the parabola, and the hyperbola, it may be laid down as a universal property of the sections of the cone. The distinction drawn in the two previous examples can have no place here, there being no difference between all known sections of the cone and all sections, since a cone demonstrably can not be intersected by a plane except in one of these four lines. It would be difficult, therefore, to refuse to the proposition arrived at, the name of a generalization, since there is no room for any generalization beyond it. But there is no induction, because there is no inference: the conclusion is a mere summing up of what was asserted in the various propositions from which it is drawn. A case somewhat, though not altogether, similar, is the proof of a geometrical theorem by means of a diagram. Whether the diagram be on paper or only in the imagination, the demonstration (as formerly observed[101]) does not prove directly the general theorem; it proves only that the conclusion, which the theorem asserts generally, is true of the particular triangle or circle exhibited in the diagram; but since we perceive that in the same way in which we have proved it of that circle, it might also be proved of any other circle, we gather up into one general expression all the singular propositions susceptible of being thus proved, and embody them in a universal proposition. Having shown that the three angles of the triangle ABC are together equal to two right angles, we conclude that this is true of every other triangle, not because it is true of ABC, but for the same reason which proved it to be true of ABC. If this were to be called Induction, an appropriate name for it would be, induction by parity of reasoning. But the term can not properly belong to it; the characteristic quality of Induction is wanting, since the truth obtained, though really general, is not believed on the evidence of particular instances. We do not conclude that all triangles have the property because some triangles have, but from the ulterior demonstrative evidence which was the ground of our conviction in the particular instances.

There are nevertheless, in mathematics, some examples of so-called Induction, in which the conclusion does bear the appearance of a generalization grounded on some of the particular cases included in it. A mathematician, when he has calculated a sufficient number of the terms of an algebraical [pg 213] or arithmetical series to have ascertained what is called the law of the series, does not hesitate to fill up any number of the succeeding terms without repeating the calculations. But I apprehend he only does so when it is apparent from a priori considerations (which might be exhibited in the form of demonstration) that the mode of formation of the subsequent terms, each from that which preceded it, must be similar to the formation of the terms which have been already calculated. And when the attempt has been hazarded without the sanction of such general considerations, there are instances on record in which it has led to false results.

It is said that Newton discovered the binomial theorem by induction; by raising a binomial successively to a certain number of powers, and comparing those powers with one another until he detected the relation in which the algebraic formula of each power stands to the exponent of that power, and to the two terms of the binomial. The fact is not improbable: but a mathematician like Newton, who seemed to arrive per saltum at principles and conclusions that ordinary mathematicians only reached by a succession of steps, certainly could not have performed the comparison in question without being led by it to the a priori ground of the law; since any one who understands sufficiently the nature of multiplication to venture upon multiplying several lines of symbols at one operation, can not but perceive that in raising a binomial to a power, the co-efficients must depend on the laws of permutation and combination: and as soon as this is recognized, the theorem is demonstrated. Indeed, when once it was seen that the law prevailed in a few of the lower powers, its identity with the law of permutation would at once suggest the considerations which prove it to obtain universally. Even, therefore, such cases as these, are but examples of what I have called Induction by parity of reasoning, that is, not really Induction, because not involving inference of a general proposition from particular instances.