There is, no doubt, a tendency (which our first example, that of death from taking a particular food, sufficiently illustrates) to associate the idea of causation with the proximate antecedent event, rather than with any of the antecedent states, or permanent facts, which may happen also to be conditions of the phenomenon; the reason being that the event not only exists, but begins to exist immediately previous; while the other conditions may have pre-existed for an indefinite time. And this tendency shows itself very visibly in the different logical fictions which are resorted to, even by men of science, to avoid the necessity of giving the name of cause to any thing which had existed for an indeterminate length of time before the effect. Thus, rather than say that the earth causes the fall of bodies, they ascribe it to a force exerted by the earth, or an attraction by the earth, abstractions which they can represent to themselves as exhausted by each effort, and therefore constituting at each successive instant a fresh fact, simultaneous with, or only immediately preceding, the effect. Inasmuch as the coming of the circumstance which completes the assemblage of conditions, is a change or event, it thence happens that an event is always the antecedent in closest apparent proximity to the consequent: and this may account for the illusion which disposes us to look upon the proximate event as standing more peculiarly in the position of a cause than any of the antecedent states. But even this peculiarity, of being in closer proximity to the effect than any other of its conditions, is, as we have already seen, far from being necessary to the common notion of a cause; with [pg 240] which notion, on the contrary, any one of the conditions, either positive or negative, is found, on occasion, completely to accord.[114]
The cause, then, philosophically speaking, is the sum total of the conditions, positive and negative taken together; the whole of the contingencies of every description, which being realized, the consequent invariably follows. The negative conditions, however, of any phenomenon, a special enumeration of which would generally be very prolix, may be all summed up under one head, namely, the absence of preventing or counteracting causes. The convenience of this mode of expression is mainly grounded on the fact, that the effects of any cause in counteracting another cause may in most cases be, with strict scientific exactness, regarded as a mere extension of its own proper and separate effects. If gravity retards the upward motion of a projectile, and deflects it into a parabolic trajectory, it produces, in so doing, the very same kind of effect, and even (as mathematicians know) the same quantity of effect, as it does in its ordinary operation of causing the fall of bodies when simply deprived of their support. If an alkaline solution mixed with an acid destroys its sourness, and prevents it from reddening vegetable blues, it is because the specific effect of the alkali is to combine with the acid, and form a compound with totally different qualities. This property, which causes of all descriptions possess, of preventing the effects of other causes by virtue (for the most part) of the same laws according to which they produce their own,[115] enables us, by establishing the general axiom that all causes are liable to be counteracted in their effects by one another, to dispense with the consideration of negative conditions entirely, and limit the notion of cause to the assemblage of the positive conditions of the phenomenon: one negative condition invariably understood, and the same in all instances (namely, the absence of counteracting causes) being sufficient, along with the sum of the positive conditions, to make up the whole set of circumstances on which the phenomenon is dependent.
§ 4. Among the positive conditions, as we have seen that there are some [pg 242] to which, in common parlance, the term cause is more readily and frequently awarded, so there are others to which it is, in ordinary circumstances, refused. In most cases of causation a distinction is commonly drawn between something which acts, and some other thing which is acted upon; between an agent and a patient. Both of these, it would be universally allowed, are conditions of the phenomenon; but it would be thought absurd to call the latter the cause, that title being reserved for the former. The distinction, however, vanishes on examination, or rather is found to be only verbal; arising from an incident of mere expression, namely, that the object said to be acted upon, and which is considered as the scene in which the effect takes place, is commonly included in the phrase by which the effect is spoken of, so that if it were also reckoned as part of the cause, the seeming incongruity would arise of its being supposed to cause itself. In the instance which we have already had, of falling bodies, the question was thus put: What is the cause which makes a stone fall? and if the answer had been “the stone itself,” the expression would have been in apparent contradiction to the meaning of the word cause. The stone, therefore, is conceived as the patient, and the earth (or, according to the common and most unphilosophical practice, an occult quality of the earth) is represented as the agent or cause. But that there is nothing fundamental in the distinction may be seen from this, that it is quite possible to conceive the stone as causing its own fall, provided the language employed be such as to save the mere verbal incongruity. We might say that the stone moves toward the earth by the properties of the matter composing it; and according to this mode of presenting the phenomenon, the stone itself might without impropriety be called the agent; though, to save the established doctrine of the inactivity of matter, men usually prefer here also to ascribe the effect to an occult quality, and say that the cause is not the stone itself, but the weight or gravitation of the stone.
Those who have contended for a radical distinction between agent and patient, have generally conceived the agent as that which causes some state of, or some change in the state of, another object which is called the patient. But a little reflection will show that the license we assume of speaking of phenomena as states of the various objects which take part in them (an artifice of which so much use has been made by some philosophers, Brown in particular, for the apparent explanation of phenomena), is simply a sort of logical fiction, useful sometimes as one among several modes of expression, but which should never be supposed to be the enunciation of a scientific truth. Even those attributes of an object which might seem with greatest propriety to be called states of the object itself, its sensible qualities, its color, hardness, shape, and the like, are in reality (as no one has pointed out more clearly than Brown himself) phenomena of causation, in which the substance is distinctly the agent, or producing cause, the patient being our own organs, and those of other sentient beings. What we call states of objects, are always sequences into which the objects enter, generally as antecedents or causes; and things are never more active than in the production of those phenomena in which they are said to be acted upon. Thus, in the example of a stone falling to the earth, according to the theory of gravitation the stone is as much an agent as the earth, which not only attracts, but is itself attracted by, the stone. In the case of a sensation produced in our organs, the laws of our organization, and even those of our minds, are as directly operative in determining the effect produced, as the laws of the outward object. Though we call prussic acid [pg 243] the agent of a person’s death, the whole of the vital and organic properties of the patient are as actively instrumental as the poison, in the chain of effects which so rapidly terminates his sentient existence. In the process of education, we may call the teacher the agent, and the scholar only the material acted upon; yet in truth all the facts which pre-existed in the scholar’s mind exert either co-operating or counteracting agencies in relation to the teacher’s efforts. It is not light alone which is the agent in vision, but light coupled with the active properties of the eye and brain, and with those of the visible object. The distinction between agent and patient is merely verbal: patients are always agents; in a great proportion, indeed, of all natural phenomena, they are so to such a degree as to react forcibly on the causes which acted upon them: and even when this is not the case, they contribute, in the same manner as any of the other conditions, to the production of the effect of which they are vulgarly treated as the mere theatre. All the positive conditions of a phenomenon are alike agents, alike active; and in any expression of the cause which professes to be complete, none of them can with reason be excluded, except such as have already been implied in the words used for describing the effect; nor by including even these would there be incurred any but a merely verbal impropriety.
§ 5. There is a case of causation which calls for separate notice, as it possesses a peculiar feature, and presents a greater degree of complexity than the common case. It often happens that the effect, or one of the effects, of a cause, is, not to produce of itself a certain phenomenon, but to fit something else for producing it. In other words, there is a case of causation in which the effect is to invest an object with a certain property. When sulphur, charcoal, and nitre are put together in certain proportions and in a certain manner, the effect is, not an explosion, but that the mixture acquires a property by which, in given circumstances, it will explode. The various causes, natural and artificial, which educate the human body or the human mind, have for their principal effect, not to make the body or mind immediately do any thing, but to endow it with certain properties—in other words, to give assurance that in given circumstances certain results will take place in it, or as consequences of it. Physiological agencies often have for the chief part of their operation to predispose the constitution to some mode of action. To take a simpler instance than all these: putting a coat of white paint upon a wall does not merely produce in those who see it done, the sensation of white; it confers on the wall the permanent property of giving that kind of sensation. Regarded in reference to the sensation, the putting on of the paint is a condition of a condition; it is a condition of the wall’s causing that particular fact. The wall may have been painted years ago, but it has acquired a property which has lasted till now, and will last longer; the antecedent condition necessary to enable the wall to become in its turn a condition, has been fulfilled once for all. In a case like this, where the immediate consequent in the sequence is a property produced in an object, no one now supposes the property to be a substantive entity “inherent” in the object. What has been produced is what, in other language, may be called a state of preparation in an object for producing an effect. The ingredients of the gunpowder have been brought into a state of preparation for exploding as soon as the other conditions of an explosion shall have occurred. In the case of the gunpowder, this state of preparation consists in a certain collocation of its particles relatively to one another. In the example of the wall, it consists in a new collocation of two [pg 244] things relatively to each other—the wall and the paint. In the example of the molding influences on the human mind, its being a collocation at all is only conjectural; for, even on the materialistic hypothesis, it would remain to be proved that the increased facility with which the brain sums up a column of figures when it has been long trained to calculation, is the result of a permanent new arrangement of some of its material particles. We must, therefore, content ourselves with what we know, and must include among the effects of causes, the capacities given to objects of being causes of other effects. This capacity is not a real thing existing in the objects; it is but a name for our conviction that they will act in a particular manner when certain new circumstances arise. We may invest this assurance of future events with a fictitious objective existence, by calling it a state of the object. But unless the state consists, as in the case of the gunpowder it does, in a collocation of particles, it expresses no present fact; it is but the contingent future fact brought back under another name.
It may be thought that this form of causation requires us to admit an exception to the doctrine that the conditions of a phenomenon—the antecedents required for calling it into existence—must all be found among the facts immediately, not remotely, preceding its commencement. But what we have arrived at is not a correction, it is only an explanation, of that doctrine. In the enumeration of the conditions required for the occurrence of any phenomenon, it always has to be included that objects must be present, possessed of given properties. It is a condition of the phenomenon explosion that an object should be present, of one or other of certain kinds, which for that reason are called explosive. The presence of one of these objects is a condition immediately precedent to the explosion. The condition which is not immediately precedent is the cause which produced, not the explosion, but the explosive property. The conditions of the explosion itself were all present immediately before it took place, and the general law, therefore, remains intact.
§ 6. It now remains to advert to a distinction which is of first-rate importance both for clearing up the notion of cause, and for obviating a very specious objection often made against the view which we have taken of the subject.
When we define the cause of any thing (in the only sense in which the present inquiry has any concern with causes) to be “the antecedent which it invariably follows,” we do not use this phrase as exactly synonymous with “the antecedent which it invariably has followed in our past experience.” Such a mode of conceiving causation would be liable to the objection very plausibly urged by Dr. Reid, namely, that according to this doctrine night must be the cause of day, and day the cause of night; since these phenomena have invariably succeeded one another from the beginning of the world. But it is necessary to our using the word cause, that we should believe not only that the antecedent always has been followed by the consequent, but that, as long as the present constitution of things[116] endures, it always will be so. And this would not be true of day and night. We do not believe that night will be followed by day under all imaginable circumstances, but only that it will be so provided the sun rises above the [pg 245] horizon. If the sun ceased to rise, which, for aught we know, may be perfectly compatible with the general laws of matter, night would be, or might be, eternal. On the other hand, if the sun is above the horizon, his light not extinct, and no opaque body between us and him, we believe firmly that unless a change takes place in the properties of matter, this combination of antecedents will be followed by the consequent, day; that if the combination of antecedents could be indefinitely prolonged, it would be always day; and that if the same combination had always existed, it would always have been day, quite independently of night as a previous condition. Therefore is it that we do not call night the cause, nor even a condition, of day. The existence of the sun (or some such luminous body), and there being no opaque medium in a straight line[117] between that body and the part of the earth where we are situated, are the sole conditions; and the union of these, without the addition of any superfluous circumstance, constitutes the cause. This is what writers mean when they say that the notion of cause involves the idea of necessity. If there be any meaning which confessedly belongs to the term necessity, it is unconditionalness. That which is necessary, that which must be, means that which will be, whatever supposition we may make in regard to all other things. The succession of day and night evidently is not necessary in this sense. It is conditional on the occurrence of other antecedents. That which will be followed by a given consequent when, and only when, some third circumstance also exists, is not the cause, even though no case should ever have occurred in which the phenomenon took place without it.
Invariable sequence, therefore, is not synonymous with causation, unless the sequence, besides being invariable, is unconditional. There are sequences, as uniform in past experience as any others whatever, which yet we do not regard as cases of causation, but as conjunctions in some sort accidental. Such, to an accurate thinker, is that of day and night. The one might have existed for any length of time, and the other not have followed the sooner for its existence; it follows only if certain other antecedents exist; and where those antecedents existed, it would follow in any case. No one, probably, ever called night the cause of day; mankind must so soon have arrived at the very obvious generalization, that the state of general illumination which we call day would follow from the presence of a sufficiently luminous body, whether darkness had preceded or not.
We may define, therefore, the cause of a phenomenon, to be the antecedent, or the concurrence of antecedents, on which it is invariably and unconditionally consequent. Or if we adopt the convenient modification of the meaning of the word cause, which confines it to the assemblage of positive conditions without the negative, then instead of “unconditionally,” we must say, “subject to no other than negative conditions.”